AideepImage commited on
Commit
553ebf1
Β·
verified Β·
1 Parent(s): 99df5c4

Update txt2panoimg/pipeline_sr.py

Browse files
Files changed (1) hide show
  1. txt2panoimg/pipeline_sr.py +1 -18
txt2panoimg/pipeline_sr.py CHANGED
@@ -1,8 +1,3 @@
1
- # Copyright Β© Alibaba, Inc. and its affiliates.
2
- # The implementation here is modifed based on diffusers.StableDiffusionControlNetImg2ImgPipeline,
3
- # originally Apache 2.0 License and public available at
4
- # https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py
5
-
6
  import copy
7
  import re
8
  from typing import Any, Callable, Dict, List, Optional, Union
@@ -53,7 +48,6 @@ EXAMPLE_DOC_STRING = """
53
  ... width=1536,
54
  ... control_image=image,
55
  ... ).images[0]
56
-
57
  ```
58
  """
59
 
@@ -141,7 +135,6 @@ def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str],
141
  max_length: int):
142
  r"""
143
  Tokenize a list of prompts and return its tokens with weights of each token.
144
-
145
  No padding, starting or ending token is included.
146
  """
147
  tokens = []
@@ -265,9 +258,7 @@ def get_weighted_text_embeddings(
265
  Prompts can be assigned with local weights using brackets. For example,
266
  prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
267
  and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
268
-
269
  Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
270
-
271
  Args:
272
  pipe (`DiffusionPipeline`):
273
  Pipe to provide access to the tokenizer and the text encoder.
@@ -434,13 +425,10 @@ class StableDiffusionControlNetImg2ImgPanoPipeline(
434
  StableDiffusionControlNetImg2ImgPipeline):
435
  r"""
436
  Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
437
-
438
  This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
439
  library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
440
-
441
  In addition the pipeline inherits the following loading methods:
442
  - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
443
-
444
  Args:
445
  vae ([`AutoencoderKL`]):
446
  Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
@@ -610,7 +598,6 @@ class StableDiffusionControlNetImg2ImgPanoPipeline(
610
  ):
611
  r"""
612
  Encodes the prompt into text encoder hidden states.
613
-
614
  Args:
615
  prompt (`str` or `list(int)`):
616
  prompt to be encoded
@@ -813,7 +800,6 @@ class StableDiffusionControlNetImg2ImgPanoPipeline(
813
  ):
814
  r"""
815
  Function invoked when calling the pipeline for generation.
816
-
817
  Args:
818
  prompt (`str` or `List[str]`, *optional*):
819
  The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
@@ -889,9 +875,7 @@ class StableDiffusionControlNetImg2ImgPanoPipeline(
889
  you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
890
  context_size ('int', *optional*, defaults to '768'):
891
  tiled size when denoise the latents.
892
-
893
  Examples:
894
-
895
  Returns:
896
  [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
897
  [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
@@ -906,7 +890,6 @@ class StableDiffusionControlNetImg2ImgPanoPipeline(
906
  return_dict: bool = True
907
  ) -> Union[DecoderOutput, torch.FloatTensor]:
908
  r"""Decode a batch of images using a tiled decoder.
909
-
910
  Args:
911
  When this option is enabled, the VAE will split the input tensor into tiles to compute decoding in several
912
  steps. This is useful to keep memory use constant regardless of image size. The end result of tiled
@@ -1199,4 +1182,4 @@ class StableDiffusionControlNetImg2ImgPanoPipeline(
1199
  return (image, has_nsfw_concept)
1200
 
1201
  return StableDiffusionPipelineOutput(
1202
- images=image, nsfw_content_detected=has_nsfw_concept)
 
 
 
 
 
 
1
  import copy
2
  import re
3
  from typing import Any, Callable, Dict, List, Optional, Union
 
48
  ... width=1536,
49
  ... control_image=image,
50
  ... ).images[0]
 
51
  ```
52
  """
53
 
 
135
  max_length: int):
136
  r"""
137
  Tokenize a list of prompts and return its tokens with weights of each token.
 
138
  No padding, starting or ending token is included.
139
  """
140
  tokens = []
 
258
  Prompts can be assigned with local weights using brackets. For example,
259
  prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
260
  and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
 
261
  Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
 
262
  Args:
263
  pipe (`DiffusionPipeline`):
264
  Pipe to provide access to the tokenizer and the text encoder.
 
425
  StableDiffusionControlNetImg2ImgPipeline):
426
  r"""
427
  Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
 
428
  This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
429
  library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
 
430
  In addition the pipeline inherits the following loading methods:
431
  - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
 
432
  Args:
433
  vae ([`AutoencoderKL`]):
434
  Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
 
598
  ):
599
  r"""
600
  Encodes the prompt into text encoder hidden states.
 
601
  Args:
602
  prompt (`str` or `list(int)`):
603
  prompt to be encoded
 
800
  ):
801
  r"""
802
  Function invoked when calling the pipeline for generation.
 
803
  Args:
804
  prompt (`str` or `List[str]`, *optional*):
805
  The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
 
875
  you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
876
  context_size ('int', *optional*, defaults to '768'):
877
  tiled size when denoise the latents.
 
878
  Examples:
 
879
  Returns:
880
  [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
881
  [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
 
890
  return_dict: bool = True
891
  ) -> Union[DecoderOutput, torch.FloatTensor]:
892
  r"""Decode a batch of images using a tiled decoder.
 
893
  Args:
894
  When this option is enabled, the VAE will split the input tensor into tiles to compute decoding in several
895
  steps. This is useful to keep memory use constant regardless of image size. The end result of tiled
 
1182
  return (image, has_nsfw_concept)
1183
 
1184
  return StableDiffusionPipelineOutput(
1185
+ images=image, nsfw_content_detected=has_nsfw_concept)