Jacqueline Garrahan commited on
Commit
8d60ca3
·
unverified ·
1 Parent(s): 0a77cc1

Fix submission checks

Browse files
src/envs.py CHANGED
@@ -15,6 +15,10 @@ RESULTS_REPO = f"{OWNER}/aiera-leaderboard-results"
15
  # If you setup a cache later, just change HF_HOME
16
  CACHE_PATH=os.getenv("HF_HOME", ".")
17
 
 
 
 
 
18
  # Local caches
19
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
20
  EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
 
15
  # If you setup a cache later, just change HF_HOME
16
  CACHE_PATH=os.getenv("HF_HOME", ".")
17
 
18
+ # NO
19
+ EXTERNAL_PROVIDERS = ["openai", "anthropic", "google"]
20
+
21
+
22
  # Local caches
23
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
24
  EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
src/leaderboard/read_evals.py CHANGED
@@ -10,6 +10,7 @@ import numpy as np
10
  from src.display.formatting import make_clickable_model
11
  from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
  from src.submission.check_validity import is_model_on_hub
 
13
 
14
 
15
  @dataclass
@@ -57,10 +58,15 @@ class EvalResult:
57
  result_key = f"{org}_{model}_{precision.value.name}"
58
  full_model = "/".join(org_and_model)
59
 
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
- architecture = "?"
 
 
 
 
 
64
  if model_config is not None:
65
  architectures = getattr(model_config, "architectures", None)
66
  if architectures:
 
10
  from src.display.formatting import make_clickable_model
11
  from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
  from src.submission.check_validity import is_model_on_hub
13
+ from src.envs import EXTERNAL_PROVIDERS
14
 
15
 
16
  @dataclass
 
58
  result_key = f"{org}_{model}_{precision.value.name}"
59
  full_model = "/".join(org_and_model)
60
 
61
+ architecture = None
62
+ model_config = None
63
+ still_on_hub = False
64
+ if not any([org.lower() in provider for provider in EXTERNAL_PROVIDERS]):
65
+ still_on_hub, _, model_config = is_model_on_hub(
66
+ full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
67
+ )
68
+ architecture = "?"
69
+
70
  if model_config is not None:
71
  architectures = getattr(model_config, "architectures", None)
72
  if architectures:
src/submission/check_validity.py CHANGED
@@ -9,6 +9,8 @@ from huggingface_hub import ModelCard
9
  from huggingface_hub.hf_api import ModelInfo
10
  from transformers import AutoConfig
11
  from transformers.models.auto.tokenization_auto import AutoTokenizer
 
 
12
 
13
  def check_model_card(repo_id: str) -> tuple[bool, str]:
14
  """Checks if the model card and license exist and have been filled"""
@@ -33,8 +35,10 @@ def check_model_card(repo_id: str) -> tuple[bool, str]:
33
 
34
  def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
  """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
 
36
  try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
 
38
  if test_tokenizer:
39
  try:
40
  tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
 
9
  from huggingface_hub.hf_api import ModelInfo
10
  from transformers import AutoConfig
11
  from transformers.models.auto.tokenization_auto import AutoTokenizer
12
+ from src.envs import API
13
+
14
 
15
  def check_model_card(repo_id: str) -> tuple[bool, str]:
16
  """Checks if the model card and license exist and have been filled"""
 
35
 
36
  def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
37
  """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
38
+ model_info = API.model_info(model_name, revision="main")
39
  try:
40
+ model_info = API.model_info(model_name)
41
+ config = model_info.config
42
  if test_tokenizer:
43
  try:
44
  tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
src/submission/submit.py CHANGED
@@ -45,12 +45,12 @@ def add_new_eval(
45
 
46
  # Is the model on the hub?
47
  if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
  if not base_model_on_hub:
50
  return styled_error(f'Base model "{base_model}" {error}')
51
 
52
  if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
  if not model_on_hub:
55
  return styled_error(f'Model "{model}" {error}')
56
 
 
45
 
46
  # Is the model on the hub?
47
  if weight_type in ["Delta", "Adapter"]:
48
+ base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=False)
49
  if not base_model_on_hub:
50
  return styled_error(f'Base model "{base_model}" {error}')
51
 
52
  if not weight_type == "Adapter":
53
+ model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=False)
54
  if not model_on_hub:
55
  return styled_error(f'Model "{model}" {error}')
56