Spaces:
Runtime error
Runtime error
File size: 31,690 Bytes
643c34b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 |
## Step-by-Step Tutorial: Building "Bagoodex Web Search"
This tutorial provides a structured walkthrough to create "Bagoodex Web Search," an open-source Perplexity-like app built with Python, Gradio, and external APIs. We'll be using the AI/ML API for AI capabilities.
### AI/ML API
AI/ML API is a game-changing platform for developers and SaaS entrepreneurs looking to integrate cutting-edge AI capabilities into their products. It offers a single point of access to over 200 state-of-the-art AI models, covering everything from NLP to computer vision.
Key Features for Developers:
- Extensive Model Library: 200+ pre-trained models for rapid prototyping and deployment. 📚
- Customization Options: Fine-tune models to fit your specific use case. 🎯
- Developer-Friendly Integration: RESTful APIs and SDKs for seamless incorporation into your stack. 🛠️
- Serverless Architecture: Focus on coding, not infrastructure management. ☁️
[Get Started for FREE](https://aimlapi.com/?via=ibrohim).
[Deep Dive](https://docs.aimlapi.com/) into AI/ML API Documentation (very detailed, can’t agree more).
---
### Step 1: Setting Up the Environment
**1.1 Create a Virtual Environment:**
```bash
python -m venv .venv
source .venv/bin/activate
```
**1.2 Install Dependencies:** Create and populate `[requirements.txt]` with:
```text
openai
gradio
python-dotenv
requests
pytube
```
Then install them:
```bash
pip install -r requirements.txt
```
**1.3 Environment Variables:** Create a `.env` file with your API keys:
```text
AIML_API_KEY=your_api_key
GOOGLE_MAPS_API_KEY=your_google_maps_api_key
```
> Here's a brief tutorial: [How to get API Key from AI/ML API. Quick step-by-step tutorial with screenshots for better understanding](https://medium.com/@abdibrokhim/how-to-get-api-key-from-ai-ml-api-225a69d0bb25).
**1.4 Git Ignore:** Add `.gitignore`:
```text
.env
.venv
__pycache__
*.pyc
.DS_Store
```
---
### Step 2: Project Structure
Your final project directory should look like:
```bash
Bagoodex_Web_Search/
├── .env
├── .gitignore
├── requirements.txt
├── app.py
├── bagoodex_client.py
├── helpers.py
├── prompts.py
└── r_types.py
```
---
### Step 3: Key Files Explained
#### 3.1 `[bagoodex_client.py]`
- Implements API interactions with `bagoodex` and GPT services.
- Import necessary modules:
```py
import os
import requests
from openai import OpenAI
from dotenv import load_dotenv
from r_types import ChatMessage
from prompts import SYSTEM_PROMPT_BASE, SYSTEM_PROMPT_MAP
from typing import List
```
- Load environment variables and set up the API client:
```py
load_dotenv()
API_KEY = os.getenv("AIML_API_KEY")
API_URL = "https://api.aimlapi.com"
```
- Define the `BagoodexClient` class:
```py
class BagoodexClient:
def __init__(self, api_key=API_KEY, api_url=API_URL):
self.api_key = api_key
self.api_url = api_url
self.client = OpenAI(base_url=self.api_url, api_key=self.api_key)
```
- Includes methods:
- `complete_chat()`: Handles general chat interactions.
```py
def complete_chat(self, query):
"""
Calls the standard chat completion endpoint using the provided query.
Returns the generated followup ID and the text response.
"""
response = self.client.chat.completions.create(
model="bagoodex/bagoodex-search-v1",
messages=[
ChatMessage(role="user", content=SYSTEM_PROMPT_BASE),
ChatMessage(role="user", content=query)
],
)
followup_id = response.id # the unique ID for follow-up searches
answer = response.choices[0].message.content
return followup_id, answer
```
- `base_qna()`: Handles basic Q&A interactions. Basically we'll use this for follow-up questions. It's pretty reusable. We should pass the different system prompts based on our use case.
```py
def base_qna(self, messages: List[ChatMessage], system_prompt=SYSTEM_PROMPT_BASE):
response = self.client.chat.completions.create(
model="gpt-4o",
messages=[
ChatMessage(role="user", content=system_prompt),
*messages
],
)
return response.choices[0].message.content
```
- Retrieves IDs for fetching follow-up resources (links, images, videos, maps).
```py
def get_links(self, followup_id):
headers = {"Authorization": f"Bearer {self.api_key}"}
params = {"followup_id": followup_id}
response = requests.get(
f"{self.api_url}/v1/bagoodex/links", headers=headers, params=params
)
return response.json()
def get_images(self, followup_id):
headers = {"Authorization": f"Bearer {self.api_key}"}
params = {"followup_id": followup_id}
response = requests.get(
f"{self.api_url}/v1/bagoodex/images", headers=headers, params=params
)
return response.json()
def get_videos(self, followup_id):
headers = {"Authorization": f"Bearer {self.api_key}"}
params = {"followup_id": followup_id}
response = requests.get(
f"{self.api_url}/v1/bagoodex/videos", headers=headers, params=params
)
return response.json()
def get_local_map(self, followup_id):
headers = {"Authorization": f"Bearer {self.api_key}"}
params = {"followup_id": followup_id}
response = requests.get(
f"{self.api_url}/v1/bagoodex/local-map", headers=headers, params=params
)
return response.json()
def get_knowledge(self, followup_id):
headers = {"Authorization": f"Bearer {self.api_key}"}
params = {"followup_id": followup_id}
response = requests.get(
f"{self.api_url}/v1/bagoodex/knowledge", headers=headers, params=params
)
return response.json()
```
Note: First, you must first call the standard chat completion endpoint `complete_chat()` with your query. The chat completion endpoint returns an ID, which must then be passed as the sole input parameter `followup_id` to the `bagoodex/links`, `bagoodex/images`, `bagoodex/videos`, `bagoodex/local-map` and `bagoodex/knowledge` endpoints.
#### 3.2 `[app.py]`
- Import necessary modules:
```py
import os
import gradio as gr
from bagoodex_client import BagoodexClient
from r_types import ChatMessage
from prompts import (
SYSTEM_PROMPT_FOLLOWUP,
SYSTEM_PROMPT_MAP,
SYSTEM_PROMPT_BASE,
SYSTEM_PROMPT_KNOWLEDGE_BASE
)
from helpers import (
embed_video,
format_links,
embed_google_map,
format_knowledge,
format_followup_questions
)
```
- Initialize the `BagoodexClient`:
```py
client = BagoodexClient()
```
- Central application logic.
```py
# ----------------------------
# Chat & Follow-up Functions
# ----------------------------
def chat_function(message, history, followup_state, chat_history_state):
"""
Process a new user message.
Appends the message and response to the conversation,
and retrieves follow-up questions.
"""
# complete_chat returns a new followup id and answer
followup_id_new, answer = client.complete_chat(message)
# Update conversation history (if history is None, use an empty list)
if history is None:
history = []
updated_history = history + [ChatMessage({"role": "user", "content": message}),
ChatMessage({"role": "assistant", "content": answer})]
# Retrieve follow-up questions using the updated conversation
followup_questions_raw = client.base_qna(
messages=updated_history, system_prompt=SYSTEM_PROMPT_FOLLOWUP
)
# Format them using the helper
followup_md = format_followup_questions(followup_questions_raw)
return answer, followup_id_new, updated_history, followup_md
def handle_followup_click(question, followup_state, chat_history_state):
"""
When a follow-up question is clicked, send it as a new message.
"""
if not question:
return chat_history_state, followup_state, ""
# Process the follow-up question via complete_chat
followup_id_new, answer = client.complete_chat(question)
updated_history = chat_history_state + [ChatMessage({"role": "user", "content": question}),
ChatMessage({"role": "assistant", "content": answer})]
# Get new follow-up questions
followup_questions_raw = client.base_qna(
messages=updated_history, system_prompt=SYSTEM_PROMPT_FOLLOWUP
)
followup_md = format_followup_questions(followup_questions_raw)
return updated_history, followup_id_new, followup_md
```
- Next setup `Local map` and `Knowledge base` functions.
```py
def handle_local_map_click(followup_state, chat_history_state):
"""
On local map click, try to get a local map.
If issues occur, fall back to using the SYSTEM_PROMPT_MAP.
"""
if not followup_state:
return chat_history_state
try:
result = client.get_local_map(followup_state)
if result:
map_url = result.get('link', '')
# Use helper to produce an embedded map iframe
html = embed_google_map(map_url)
# Fall back: use the base_qna call with SYSTEM_PROMPT_MAP
result = client.base_qna(
messages=chat_history_state, system_prompt=SYSTEM_PROMPT_MAP
)
# Assume result contains a 'link' field
html = embed_google_map(result.get('link', ''))
new_message = ChatMessage({"role": "assistant", "content": html})
return chat_history_state + [new_message]
except Exception:
return chat_history_state
def handle_knowledge_click(followup_state, chat_history_state):
"""
On knowledge base click, fetch and format knowledge content.
"""
if not followup_state:
return chat_history_state
try:
print('trying to get knowledge')
result = client.get_knowledge(followup_state)
knowledge_md = format_knowledge(result)
if knowledge_md == 0000:
print('falling back to base_qna')
# Fall back: use the base_qna call with SYSTEM_PROMPT_KNOWLEDGE_BASE
result = client.base_qna(
messages=chat_history_state, system_prompt=SYSTEM_PROMPT_KNOWLEDGE_BASE
)
knowledge_md = format_knowledge(result)
new_message = ChatMessage({"role": "assistant", "content": knowledge_md})
return chat_history_state + [new_message]
except Exception:
return chat_history_state
```
- Advanced search functions.
```py
# ----------------------------
# Advanced Search Functions
# ----------------------------
def perform_image_search(followup_state):
if not followup_state:
return []
result = client.get_images(followup_state)
# For images we simply return a list of original URLs
return [item.get("original", "") for item in result]
def perform_video_search(followup_state):
if not followup_state:
return "<p>No followup ID available.</p>"
result = client.get_videos(followup_state)
# Use the helper to produce the embed iframes (supports multiple videos)
return embed_video(result)
def perform_links_search(followup_state):
if not followup_state:
return gr.Markdown("No followup ID available.")
result = client.get_links(followup_state)
return format_links(result)
```
- Uses `Gradio` for UI. Settign up CSS.
```py
# ----------------------------
# UI Build
# ----------------------------
css = """
#chatbot {
height: 100%;
}
h1, h2, h3, h4, h5, h6 {
text-align: center;
display: block;
}
"""
```
- Handles chat, follow-up interactions, and advanced search features (images, videos, links).
```py
with gr.Blocks(css=css, fill_height=True) as demo:
gr.Markdown("""
## like perplexity, but with less features.
#### built by [@abdibrokhim](https://yaps.gg).
""")
# State variables to hold followup ID and conversation history, plus follow-up questions text
followup_state = gr.State(None)
chat_history_state = gr.State([]) # holds conversation history as a list of messages
followup_md_state = gr.State("") # holds follow-up questions as Markdown text
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
btn_local_map = gr.Button("Local Map Search (coming soon...)", variant="secondary", size="sm", interactive=False)
btn_knowledge = gr.Button("Knowledge Base (coming soon...)", variant="secondary", size="sm", interactive=False)
# The ChatInterface now uses additional outputs for both followup_state and conversation history,
# plus follow-up questions Markdown.
chat = gr.ChatInterface(
fn=chat_function,
type="messages",
additional_inputs=[followup_state, chat_history_state],
additional_outputs=[followup_state, chat_history_state, followup_md_state],
)
# Button callbacks to append local map and knowledge base results to chat
btn_local_map.click(
fn=handle_local_map_click,
inputs=[followup_state, chat_history_state],
outputs=chat.chatbot
)
btn_knowledge.click(
fn=handle_knowledge_click,
inputs=[followup_state, chat_history_state],
outputs=chat.chatbot
)
# Radio-based follow-up questions
followup_radio = gr.Radio(
choices=[],
label="Follow-up Questions (select one and click 'Send Follow-up')"
)
btn_send_followup = gr.Button("Send Follow-up")
# When the user clicks "Send Follow-up", the selected question is passed
# to handle_followup_click
btn_send_followup.click(
fn=handle_followup_click,
inputs=[followup_radio, followup_state, chat_history_state],
outputs=[chat.chatbot, followup_state, followup_md_state]
)
# Update the radio choices when followup_md_state changes
def update_followup_radio(md_text):
"""
Parse Markdown lines to extract questions starting with '- '.
"""
lines = md_text.splitlines()
questions = []
for line in lines:
if line.startswith("- "):
questions.append(line[2:])
return gr.update(choices=questions, value=None)
followup_md_state.change(
fn=update_followup_radio,
inputs=[followup_md_state],
outputs=[followup_radio]
)
with gr.Column(scale=1):
gr.Markdown("### Advanced Search Options")
with gr.Column(variant="panel"):
btn_images = gr.Button("Search Images")
btn_videos = gr.Button("Search Videos")
btn_links = gr.Button("Search Links")
gallery_output = gr.Gallery(label="Image Results", columns=2)
video_output = gr.HTML(label="Video Results") # HTML for embedded video iframes
links_output = gr.Markdown(label="Links Results")
btn_images.click(
fn=perform_image_search,
inputs=[followup_state],
outputs=[gallery_output]
)
btn_videos.click(
fn=perform_video_search,
inputs=[followup_state],
outputs=[video_output]
)
btn_links.click(
fn=perform_links_search,
inputs=[followup_state],
outputs=[links_output]
)
demo.launch()
```
Questions you may consider to ask:
```text
how to make slingshot?
who created light (e.g., electricity) Tesla or Edison in quick short?
```
#### 3.2 `[helpers.py]`
- Utility functions for formatting results:
- import the necessary modules:
```py
from dotenv import load_dotenv
import os
import gradio as gr
import urllib.parse
import re
from pytube import YouTube
from typing import List, Optional, Dict
from r_types import (
SearchVideosResponse,
SearchImagesResponse,
SearchLinksResponse,
LocalMapResponse,
KnowledgeBaseResponse
)
import json
```
- `embed_video()` for YouTube videos
```py
def get_video_id(url: str) -> Optional[str]:
"""
Safely retrieve the YouTube video_id from a given URL using pytube.
Returns None if the URL is invalid or an error occurs.
"""
if not url:
return None
try:
yt = YouTube(url)
return yt.video_id
except Exception:
# If the URL is invalid or pytube fails, return None
return None
def embed_video(videos: List[SearchVideosResponse]) -> str:
"""
Given a list of video data (with 'link' and 'title'),
returns an HTML string of embedded YouTube iframes.
"""
if not videos:
return "<p>No videos found.</p>"
# Collect each iframe snippet
iframes = []
for video in videos:
url = video.get("link", "")
video_id = get_video_id(url)
if not video_id:
# Skip invalid or non-parsable links
continue
title = video.get("title", "").replace('"', '\\"') # Escape quotes
iframe = f"""
<iframe
width="560"
height="315"
src="https://www.youtube.com/embed/{video_id}"
title="{title}"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>
"""
iframes.append(iframe)
# If no valid videos after processing, return a fallback message
if not iframes:
return "<p>No valid YouTube videos found.</p>"
# Join all iframes into one HTML string
return "\n".join(iframes)
```
- `format_links()` for links
```py
def format_links(links) -> str:
"""
Convert a list of {'title': str, 'link': str} objects
into a bulleted Markdown string with clickable links.
"""
if not links:
return "No links found."
links_md = "**Links:**\n"
for url in links:
title = url.rstrip('/').split('/')[-1]
links_md += f"- [{title}]({url})\n"
return links_md
```
- `embed_google_map()` for maps
```py
def embed_google_map(map_url: str) -> str:
"""
Extracts a textual location from the given Google Maps URL
and returns an embedded Google Map iframe for that location.
Assumes you have a valid API key in place of 'YOUR_API_KEY'.
"""
load_dotenv()
GOOGLE_MAPS_API_KEY = os.getenv("GOOGLE_MAPS_API_KEY")
if not map_url:
return "<p>Invalid Google Maps URL.</p>"
# Attempt to extract "San+Francisco,+CA" from the URL
match = re.search(r"/maps/place/([^/]+)", map_url)
if not match:
return "Invalid Google Maps URL. Could not extract location."
location_text = match.group(1)
# Remove query params or additional slashes from the captured group
location_text = re.split(r"[/?]", location_text)[0]
# URL-encode location to avoid issues with special characters
encoded_location = urllib.parse.quote(location_text, safe="")
embed_html = f"""
<iframe
width="600"
height="450"
style="border:0"
loading="lazy"
allowfullscreen
src="https://www.google.com/maps/embed/v1/place?key={GOOGLE_MAPS_API_KEY}&q={encoded_location}">
</iframe>
"""
return embed_html
```
- `format_knowledge()` for knowledge base info
```py
def format_knowledge(raw_result: str) -> str:
"""
Given a dictionary of knowledge data (e.g., about a person),
produce a Markdown string summarizing that info.
"""
if not raw_result:
return 0000
# Clean up the raw JSON string
clean_json_str = cleanup_raw_json(raw_result)
print('Knowledge Data: ', clean_json_str)
try:
# Parse the cleaned JSON string
result = json.loads(clean_json_str)
title = result.get("title", "...")
type_ = result.get("type", "...")
born = result.get("born", "...")
died = result.get("died", "...")
content = f"""
**{title}**
Type: {type_}
Born: {born}
Died: {died}
"""
return content
except json.JSONDecodeError:
return "Error: Failed to parse knowledge data."
```
- Set up `format_followup_questions()` function that formats follow-up questions
```py
def format_followup_questions(raw_questions: str) -> str:
"""
Extracts and formats follow-up questions from a raw JSON-like string.
The input string may contain triple backticks (```json ... ```) which need to be removed before parsing.
Expected input format:
\```json
{
"followup_question": [
"What materials are needed to make a slingshot?",
"How to make a slingshot more powerful?"
]
}
\```
Returns a Markdown-formatted string with the follow-up questions.
"""
if not raw_questions:
return "No follow-up questions available."
# Clean up the raw JSON string
clean_json_str = cleanup_raw_json(raw_questions)
try:
# Parse the cleaned JSON string
questions_dict = json.loads(clean_json_str)
# Ensure the expected key exists
followup_list = questions_dict.get("followup_question", [])
if not isinstance(followup_list, list) or not followup_list:
return "No follow-up questions available."
# Format the questions into Markdown
questions_md = "### Follow-up Questions\n\n"
for question in followup_list:
questions_md += f"- {question}\n"
return questions_md
except json.JSONDecodeError:
return "Error: Failed to parse follow-up questions."
```
- `cleanup_row_json()` function to clean up raw JSON strings
```py
def cleanup_raw_json(raw_json: str) -> str:
"""
Remove triple backticks and 'json' from the beginning and end of a raw JSON string.
"""
return re.sub(r"```json|```", "", raw_json).strip()
```
#### 3.3 `[prompts.py]`
- Contains system prompts for various tasks:
For example:
`SYSTEM_PROMPT_BASE` - For general chat interactions.
```py
SYSTEM_PROMPT_BASE = """
######SYSTEM INIATED######
You will be given a conversation chat (e.g., text/ paragraph).
Answer the given conversation chat with a relevant response.
######NOTE######
Be nice and polite in your responses!
######SYSTEM SHUTDOWN######
"""
```
`SYSTEM_PROMPT_MAP` - For providing places based on the given content.
```py
SYSTEM_PROMPT_MAP = """
######SYSTEM INIATED######
You will be given a content from conversation chat (e.g., text/ paragraph).
Your task is to analyze the given content and provide different types of places as close as possible to the given content.
For exampl: If the given content (conversation chat) was about "How to make a slingshot", you can provide places like "Hardware store", "Woodworking shop", "Outdoor sports store", etc.
Make sure the places you provide are relevant to the given content. And as much as close to the given content, the better.
Your final output should be a list of places.
Here's JSON format example:
\```json
{
"places": ["Hardware store", "Woodworking shop", "Outdoor sports store"]
}
\```
######NOTE######
Make sure to return only JSON data! Nothing else!
######SYSTEM SHUTDOWN######
"""
```
`SYSTEM_PROMPT_FOLLOWUP` - For generating follow-up questions based on the given content.
```py
SYSTEM_PROMPT_FOLLOWUP = """
######SYSTEM INIATED######
You will be given a content from conversation chat (e.g., text/ paragraph).
Your task is to analyze the given content and provide a follow-up question based on the given content.
For example: If the given content (conversation chat) was about "How to make a slingshot", you can provide a follow-up question like "What materials are needed to make a slingshot?".
Make sure the follow-up question you provide is relevant to the given content.
Your final output should be a List of follow-up question.
Here's JSON format example:
\```json
{
"followup_question": ["What materials are needed to make a slingshot?", "How to make a slingshot more powerful?"]
}
\```
######NOTE######
Make sure to return only JSON data! Nothing else!
######SYSTEM SHUTDOWN######
"""
```
`SYSTEM_PROMPT_KNOWLEDGE_BASE` - For generating knowledge base responses based on the given content.
```py
SYSTEM_PROMPT_KNOWLEDGE_BASE = """
######SYSTEM INIATED######
You will be given a content from conversation chat (e.g., text/ paragraph).
Your task is to analyze the given content and provide a knowledge base response based on the given content.
For example: If the given content (conversation chat) was about "How to make a slingshot".
You should analyze it and find the exact creator or founder or inventor of the slingshot.
Let's assume you just found out that the slingshot was invented by "Charles Goodyear".
Then return `question` in a JSON format. (e.g., {"question": "Who is Charles Goodyear?"}).
Your final output should be a JSON data with the knowledge base response.
Here's JSON format example:
\```json
{
"question": "Who is Charles Goodyear?",
}
\```
######NOTE######
Make sure to return only JSON data! Nothing else!
######SYSTEM SHUTDOWN######
"""
```
#### 3.3 `[r_types.py]`
- Placeholder for custom types and schemas.
```py
from typing import TypedDict
# [ChatMessage]:
# <response>
# {
# "role": "system",
# "content": "Hello, how can I help you today?"
# }
# </response>
class ChatMessage(TypedDict):
role: str
content: str
# [Search Videos]:
# <response>
# Videos:
# [{'link': 'https://www.youtube.com/watch?v=X9oWGuKypuY', 'thumbnail': 'https://dmwtgq8yidg0m.cloudfront.net/medium/d3G6HeC5BO93-video-thumb.jpeg', 'title': 'Easy Home Made Slingshot'}, {'link': 'https://www.youtube.com/watch?v=V2iZF8oAXHo&pp=ygUMI2d1bGVsaGFuZGxl', 'thumbnail': 'https://dmwtgq8yidg0m.cloudfront.net/medium/sb2Iw9Ug-Pne-video-thumb.jpeg', 'title': 'Making an Apple Wood Slingshot | Woodcraft'}]
# </response>
class SearchVideosResponse(TypedDict):
link: str
thumbnail: str
title: str
# [Search Images]:
# <response>
# [{'source': '', 'original': 'https://i.ytimg.com/vi/iYlJirFtYaA/sddefault.jpg', 'title': 'How to make a Slingshot using Pencils ...', 'source_name': 'YouTube'}, {'source': '', 'original': 'https://i.ytimg.com/vi/HWSkVaptzRA/maxresdefault.jpg', 'title': 'How to make a Slingshot at Home - YouTube', 'source_name': 'YouTube'}, {'source': '', 'original': 'https://content.instructables.com/FHB/VGF8/FHXUOJKJ/FHBVGF8FHXUOJKJ.jpg?auto=webp', 'title': 'Country Boy" Style Slingshot ...', 'source_name': 'Instructables'}, {'source': '', 'original': 'https://i.ytimg.com/vi/6wXqlJVw03U/maxresdefault.jpg', 'title': 'Make slingshot using popsicle stick ...', 'source_name': 'YouTube'}, {'source': '', 'original': 'https://ds-tc.prod.pbskids.org/designsquad/diy/DESIGN-SQUAD-42.jpg', 'title': 'Build | Indoor Slingshot . DESIGN SQUAD ...', 'source_name': 'PBS KIDS'}, {'source': '', 'original': 'https://i.ytimg.com/vi/wCxFkPLuNyA/maxresdefault.jpg', 'title': 'Paper Ninja Weapons ...', 'source_name': 'YouTube'}, {'source': '', 'original': 'https://i0.wp.com/makezine.com/wp-content/uploads/2015/01/slingshot1.jpg?fit=800%2C600&ssl=1', 'title': 'Rotating Bearings ...', 'source_name': 'Make Magazine'}, {'source': '', 'original': 'https://makeandtakes.com/wp-content/uploads/IMG_1144-1.jpg', 'title': 'Make a DIY Stick Slingshot Kids Craft', 'source_name': 'Make and Takes'}, {'source': '', 'original': 'https://i.ytimg.com/vi/X9oWGuKypuY/maxresdefault.jpg', 'title': 'Easy Home Made Slingshot - YouTube', 'source_name': 'YouTube'}, {'source': '', 'original': 'https://www.wikihow.com/images/thumb/4/41/Make-a-Sling-Shot-Step-7-Version-5.jpg/550px-nowatermark-Make-a-Sling-Shot-Step-7-Version-5.jpg', 'title': 'How to Make a Sling Shot: 15 Steps ...', 'source_name': 'wikiHow'}]
# </response>
class SearchImagesResponse(TypedDict):
source: str
original: str
title: str
source: str
source_name: str
# [Links]:
# <response>
# ['https://www.reddit.com/r/slingshots/comments/1d50p3e/how_to_build_a_sling_at_home_thats_not_shit/', 'https://www.instructables.com/Make-a-Giant-Slingshot/', 'https://www.mudandbloom.com/blog/stick-slingshot', 'https://pbskids.org/designsquad/build/indoor-slingshot/', 'https://www.instructables.com/How-to-Make-a-Slingshot-2/']
# </response>
class SearchLinksResponse(TypedDict):
title: str
link: str
### Local Map Response:
# <response>
# {
# "link": "https://www.google.com/maps/place/San+Francisco,+CA/data=!4m2!3m1!1s0x80859a6d00690021:0x4a501367f076adff?sa=X&ved=2ahUKEwjqg7eNz9KLAxVCFFkFHWSPEeIQ8gF6BAgqEAA&hl=en",
# "image": "https://dmwtgq8yidg0m.cloudfront.net/images/TdNFUpcEvvHL-local-map.webp"
# }
# </response>
class LocalMapResponse(TypedDict):
link: str
imgae: str
### Model Response:
# <response>
# ```
# {
# 'title': 'Nikola Tesla',
# 'type': 'Engineer and futurist',
# 'description': None,
# 'born': 'July 10, 1856, Smiljan, Croatia',
# 'died': 'January 7, 1943 (age 86 years), The New Yorker A Wyndham Hotel, New York, NY'
# }
# ```
# </response>
class KnowledgeBaseResponse(TypedDict):
title: str
type: str
description: str
born: str
died: str
```
---
### Step 4: Running the Application
**4.1 Run **``**:**
```bash
python3 app.py
```
**4.2 Access the Application:**
- Open your browser and visit the provided Gradio URL (`http://127.0.0.1:7860`).
---
### Step 5: Application Features
#### **Basic Interaction:**
- Type queries directly into the chat interface.
- Receive AI-generated answers and relevant follow-up suggestions.
#### **Advanced Features:**
- Image, video, and link searches from the follow-up context.
- Knowledge base retrieval.
- Local map searches.
---
### Step 5: Customizing Your App
- Modify prompts in `[prompts.py]` to personalize AI behavior.
- Expand functionality by adding more helpers or API endpoints in `[bagoodex_client.py]`.
- Adjust UI and functionalities in `[app.py]`.
---
### Step 5: Deploying Your App
- Consider deploying on `Hugging Face Spaces`.
---
### Conclusion
In this tutorial, you built "Bagoodex Web Search," a versatile AI-powered search tool. You learned to interact with external APIs, handle follow-up interactions, and create a user-friendly interface with Gradio. You can now expand this project with more features and deploy it to share with others.
|