AjaykumarPilla commited on
Commit
1213ff3
·
verified ·
1 Parent(s): d41a272

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -64
app.py CHANGED
@@ -13,10 +13,13 @@ model = YOLO("best.pt")
13
  # Constants for LBW decision and video processing
14
  STUMPS_WIDTH = 0.2286 # meters (width of stumps)
15
  BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
16
- FRAME_RATE = 20 # Input video frame rate (reduced to 20 FPS)
17
- SLOW_MOTION_FACTOR = 3 # Adjusted for 20 FPS (slower playback without being too slow)
18
  CONF_THRESHOLD = 0.25 # Confidence threshold for detection
19
- IMPACT_ZONE_Y = 0.85 # Fraction of frame height where impact is likely (near stumps)
 
 
 
20
 
21
  def process_video(video_path):
22
  if not os.path.exists(video_path):
@@ -37,11 +40,11 @@ def process_video(video_path):
37
  results = model.predict(frame, conf=CONF_THRESHOLD)
38
  detections = 0
39
  for detection in results[0].boxes:
40
- if detection.cls == 0: # Assuming class 0 is the ball
41
  detections += 1
42
  x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
43
  ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
44
- detection_frames.append(frame_count - 1) # Store frame index (0-based)
45
  cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
46
  frames[-1] = frame
47
  debug_log.append(f"Frame {frame_count}: {detections} ball detections")
@@ -54,36 +57,38 @@ def process_video(video_path):
54
 
55
  return frames, ball_positions, detection_frames, "\n".join(debug_log)
56
 
57
- def estimate_trajectory(ball_positions, frames):
58
  if len(ball_positions) < 2:
59
- return None, None, None, "Error: Fewer than 2 ball detections for trajectory"
60
-
61
  frame_height = frames[0].shape[0]
62
-
63
  # Extract x, y coordinates
64
  x_coords = [pos[0] for pos in ball_positions]
65
  y_coords = [pos[1] for pos in ball_positions]
66
- times = np.arange(len(ball_positions)) / FRAME_RATE
67
 
68
- # Detect the pitch point: find when the ball touches the ground
69
- pitch_point = None
70
  for i, y in enumerate(y_coords):
71
- if y > frame_height * 0.75: # Threshold for ground contact (near the bottom of the frame)
72
- pitch_point = ball_positions[i]
73
  break
74
-
75
- # Find impact point (closest to batsman, near stumps)
 
 
76
  impact_idx = None
77
- for i, y in enumerate(y_coords):
78
- if y > frame_height * IMPACT_ZONE_Y: # Ball is near stumps/batsman
 
79
  impact_idx = i
80
  break
81
  if impact_idx is None:
82
- impact_idx = len(ball_positions) - 1 # Fallback to last detection
83
-
84
  impact_point = ball_positions[impact_idx]
 
85
 
86
- # Use positions up to impact for interpolation
87
  x_coords = x_coords[:impact_idx + 1]
88
  y_coords = y_coords[:impact_idx + 1]
89
  times = times[:impact_idx + 1]
@@ -92,111 +97,124 @@ def estimate_trajectory(ball_positions, frames):
92
  fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
93
  fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
94
  except Exception as e:
95
- return None, None, None, f"Error in trajectory interpolation: {str(e)}"
96
 
97
- # Project trajectory (detected + future for LBW decision)
 
 
 
98
  t_full = np.linspace(times[0], times[-1] + 0.5, len(times) + 10)
99
  x_full = fx(t_full)
100
  y_full = fy(t_full)
101
- trajectory = list(zip(x_full, y_full))
102
 
103
- return trajectory, pitch_point, impact_point, "Trajectory estimated successfully"
 
 
 
104
 
105
- def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point):
106
  if not frames:
107
  return "Error: No frames processed", None, None, None
108
- if not trajectory or len(ball_positions) < 2:
109
  return "Not enough data (insufficient ball detections)", None, None, None
110
 
111
  frame_height, frame_width = frames[0].shape[:2]
112
  stumps_x = frame_width / 2
113
- stumps_y = frame_height * 0.9 # Position of the stumps at the bottom of the frame
114
  stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
115
 
116
  pitch_x, pitch_y = pitch_point
117
  impact_x, impact_y = impact_point
118
 
119
- # Check pitching point - the ball should land between stumps
120
  if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
121
- return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", trajectory, pitch_point, impact_point
122
 
123
- # Check impact point - the ball should hit within the stumps area
124
  if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
125
- return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
126
 
127
  # Check trajectory hitting stumps
128
- for x, y in trajectory:
129
  if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
130
- return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
131
-
132
- return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
133
 
134
- def generate_slow_motion(frames, trajectory, pitch_point, impact_point, detection_frames, output_path):
135
  if not frames:
136
  return None
137
- fourcc = cv2.VideoWriter_fourcc(*'mp4v')
138
- out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frames[0].shape[1], frames[0].shape[0]))
 
 
 
139
 
140
- trajectory_points = np.array(trajectory[:len(detection_frames)], dtype=np.int32).reshape((-1, 1, 2))
 
141
 
142
- pitch_point_detected = False
143
- impact_point_detected = False
144
 
145
  for i, frame in enumerate(frames):
146
- # Draw trajectory (blue line) only for frames with detections
 
 
 
 
 
 
 
 
 
147
  if i in detection_frames and trajectory_points.size > 0:
148
- cv2.polylines(frame, [trajectory_points[:detection_frames.index(i) + 1]], False, (255, 0, 0), 2)
 
 
149
 
150
- # Draw pitch point (red circle with label) when the ball touches the ground
151
- if pitch_point and not pitch_point_detected:
152
  x, y = pitch_point
153
- if y > frame.shape[0] * 0.75: # Adjust this threshold for the ground position
154
- pitch_point_detected = True
155
- if pitch_point_detected:
156
  cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1)
157
  cv2.putText(frame, "Pitch Point", (int(x) + 10, int(y) - 10),
158
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
159
 
160
- # Draw impact point (yellow circle with label) when ball is near stumps
161
- if impact_point and not impact_point_detected:
162
  x, y = impact_point
163
- if y > frame.shape[0] * 0.85: # Adjust this threshold for impact point
164
- impact_point_detected = True
165
- if impact_point_detected:
166
  cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), -1)
167
  cv2.putText(frame, "Impact Point", (int(x) + 10, int(y) + 20),
168
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
169
 
170
- # Write frames to output video
171
  for _ in range(SLOW_MOTION_FACTOR):
172
  out.write(frame)
173
-
174
  out.release()
175
  return output_path
176
 
177
  def drs_review(video):
178
  frames, ball_positions, detection_frames, debug_log = process_video(video)
179
  if not frames:
180
- return f"Error: Failed to process video", None
181
- trajectory, pitch_point, impact_point, trajectory_log = estimate_trajectory(ball_positions, frames)
182
- decision, trajectory, pitch_point, impact_point = lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point)
183
 
184
  output_path = f"output_{uuid.uuid4()}.mp4"
185
- slow_motion_path = generate_slow_motion(frames, trajectory, pitch_point, impact_point, detection_frames, output_path)
186
 
187
- return f"DRS Decision: {decision}", slow_motion_path
 
188
 
189
  # Gradio interface
190
  iface = gr.Interface(
191
  fn=drs_review,
192
  inputs=gr.Video(label="Upload Video Clip"),
193
  outputs=[
194
- gr.Textbox(label="DRS Decision"),
195
- gr.Video(label="Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue Line), Pitch Point (Red), Impact Point (Yellow)")
196
  ],
197
  title="AI-Powered DRS for LBW in Local Cricket",
198
  description="Upload a video clip of a cricket delivery to get an LBW decision and slow-motion replay showing ball detection (green boxes), trajectory (blue line), pitch point (red circle), and impact point (yellow circle)."
199
  )
200
 
201
  if __name__ == "__main__":
202
- iface.launch()
 
13
  # Constants for LBW decision and video processing
14
  STUMPS_WIDTH = 0.2286 # meters (width of stumps)
15
  BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
16
+ FRAME_RATE = 20 # Input video frame rate
17
+ SLOW_MOTION_FACTOR = 3 # Adjusted for 20 FPS
18
  CONF_THRESHOLD = 0.25 # Confidence threshold for detection
19
+ IMPACT_ZONE_Y = 0.85 # Fraction of frame height for impact zone
20
+ PITCH_ZONE_Y = 0.75 # Fraction of frame height for pitch zone
21
+ IMPACT_DELTA_Y = 50 # Pixels for detecting sudden y-position change
22
+ STUMPS_HEIGHT = 0.711 # meters (height of stumps)
23
 
24
  def process_video(video_path):
25
  if not os.path.exists(video_path):
 
40
  results = model.predict(frame, conf=CONF_THRESHOLD)
41
  detections = 0
42
  for detection in results[0].boxes:
43
+ if detection.cls == 0: # Class 0 is the ball
44
  detections += 1
45
  x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
46
  ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
47
+ detection_frames.append(frame_count - 1) # 0-based index
48
  cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
49
  frames[-1] = frame
50
  debug_log.append(f"Frame {frame_count}: {detections} ball detections")
 
57
 
58
  return frames, ball_positions, detection_frames, "\n".join(debug_log)
59
 
60
+ def estimate_trajectory(ball_positions, detection_frames, frames):
61
  if len(ball_positions) < 2:
62
+ return None, None, None, None, None, "Error: Fewer than 2 ball detections for trajectory"
 
63
  frame_height = frames[0].shape[0]
64
+
65
  # Extract x, y coordinates
66
  x_coords = [pos[0] for pos in ball_positions]
67
  y_coords = [pos[1] for pos in ball_positions]
68
+ times = np.array(detection_frames) / FRAME_RATE
69
 
70
+ # Pitch point: first detection or when y exceeds PITCH_ZONE_Y
71
+ pitch_idx = 0
72
  for i, y in enumerate(y_coords):
73
+ if y > frame_height * PITCH_ZONE_Y:
74
+ pitch_idx = i
75
  break
76
+ pitch_point = ball_positions[pitch_idx]
77
+ pitch_frame = detection_frames[pitch_idx]
78
+
79
+ # Impact point: sudden y-change or y exceeds IMPACT_ZONE_Y
80
  impact_idx = None
81
+ for i in range(1, len(y_coords)):
82
+ if (y_coords[i] > frame_height * IMPACT_ZONE_Y or
83
+ abs(y_coords[i] - y_coords[i-1]) > IMPACT_DELTA_Y):
84
  impact_idx = i
85
  break
86
  if impact_idx is None:
87
+ impact_idx = len(ball_positions) - 1
 
88
  impact_point = ball_positions[impact_idx]
89
+ impact_frame = detection_frames[impact_idx]
90
 
91
+ # Use only detected positions for trajectory
92
  x_coords = x_coords[:impact_idx + 1]
93
  y_coords = y_coords[:impact_idx + 1]
94
  times = times[:impact_idx + 1]
 
97
  fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
98
  fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
99
  except Exception as e:
100
+ return None, None, None, None, None, f"Error in trajectory interpolation: {str(e)}"
101
 
102
+ # Trajectory for visualization (detected frames only)
103
+ vis_trajectory = list(zip(x_coords, y_coords))
104
+
105
+ # Full trajectory for LBW (includes projection)
106
  t_full = np.linspace(times[0], times[-1] + 0.5, len(times) + 10)
107
  x_full = fx(t_full)
108
  y_full = fy(t_full)
109
+ full_trajectory = list(zip(x_full, y_full))
110
 
111
+ debug_log = (f"Trajectory estimated successfully\n"
112
+ f"Pitch point at frame {pitch_frame + 1}: ({pitch_point[0]:.1f}, {pitch_point[1]:.1f})\n"
113
+ f"Impact point at frame {impact_frame + 1}: ({impact_point[0]:.1f}, {impact_point[1]:.1f})")
114
+ return full_trajectory, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, debug_log
115
 
116
+ def lbw_decision(ball_positions, full_trajectory, frames, pitch_point, impact_point):
117
  if not frames:
118
  return "Error: No frames processed", None, None, None
119
+ if not full_trajectory or len(ball_positions) < 2:
120
  return "Not enough data (insufficient ball detections)", None, None, None
121
 
122
  frame_height, frame_width = frames[0].shape[:2]
123
  stumps_x = frame_width / 2
124
+ stumps_y = frame_height * 0.9
125
  stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
126
 
127
  pitch_x, pitch_y = pitch_point
128
  impact_x, impact_y = impact_point
129
 
130
+ # Check pitching point
131
  if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
132
+ return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", full_trajectory, pitch_point, impact_point
133
 
134
+ # Check impact point
135
  if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
136
+ return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})", full_trajectory, pitch_point, impact_point
137
 
138
  # Check trajectory hitting stumps
139
+ for x, y in full_trajectory:
140
  if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
141
+ return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", full_trajectory, pitch_point, impact_point
142
+ return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", full_trajectory, pitch_point, impact_point
 
143
 
144
+ def generate_slow_motion(frames, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, detection_frames, output_path):
145
  if not frames:
146
  return None
147
+ frame_height, frame_width = frames[0].shape[:2]
148
+ stumps_x = frame_width / 2
149
+ stumps_y = frame_height * 0.9
150
+ stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
151
+ stumps_height_pixels = frame_height * (STUMPS_HEIGHT / 3.0)
152
 
153
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
154
+ out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frame_width, frame_height))
155
 
156
+ # Prepare trajectory points for visualization
157
+ trajectory_points = np.array(vis_trajectory, dtype=np.int32).reshape((-1, 1, 2))
158
 
159
  for i, frame in enumerate(frames):
160
+ # Draw stumps (three white vertical lines)
161
+ stump_positions = [
162
+ (stumps_x - stumps_width_pixels / 2, stumps_y), # Left stump
163
+ (stumps_x, stumps_y), # Middle stump
164
+ (stumps_x + stumps_width_pixels / 2, stumps_y) # Right stump
165
+ ]
166
+ for x, y in stump_positions:
167
+ cv2.line(frame, (int(x), int(y)), (int(x), int(y - stumps_height_pixels)), (255, 255, 255), 2)
168
+
169
+ # Draw trajectory (blue line) only for detected frames
170
  if i in detection_frames and trajectory_points.size > 0:
171
+ idx = detection_frames.index(i) + 1
172
+ if idx <= len(trajectory_points):
173
+ cv2.polylines(frame, [trajectory_points[:idx]], False, (255, 0, 0), 2)
174
 
175
+ # Draw pitch point (red circle) only in pitch frame
176
+ if pitch_point and i == pitch_frame:
177
  x, y = pitch_point
 
 
 
178
  cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1)
179
  cv2.putText(frame, "Pitch Point", (int(x) + 10, int(y) - 10),
180
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
181
 
182
+ # Draw impact point (yellow circle) only in impact frame
183
+ if impact_point and i == impact_frame:
184
  x, y = impact_point
 
 
 
185
  cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), -1)
186
  cv2.putText(frame, "Impact Point", (int(x) + 10, int(y) + 20),
187
  cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
188
 
 
189
  for _ in range(SLOW_MOTION_FACTOR):
190
  out.write(frame)
 
191
  out.release()
192
  return output_path
193
 
194
  def drs_review(video):
195
  frames, ball_positions, detection_frames, debug_log = process_video(video)
196
  if not frames:
197
+ return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None
198
+ full_trajectory, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, trajectory_log = estimate_trajectory(ball_positions, detection_frames, frames)
199
+ decision, full_trajectory, pitch_point, impact_point = lbw_decision(ball_positions, full_trajectory, frames, pitch_point, impact_point)
200
 
201
  output_path = f"output_{uuid.uuid4()}.mp4"
202
+ slow_motion_path = generate_slow_motion(frames, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, detection_frames, output_path)
203
 
204
+ debug_output = f"{debug_log}\n{trajectory_log}"
205
+ return f"DRS Decision: {decision}\nDebug Log:\n{debug_output}", slow_motion_path
206
 
207
  # Gradio interface
208
  iface = gr.Interface(
209
  fn=drs_review,
210
  inputs=gr.Video(label="Upload Video Clip"),
211
  outputs=[
212
+ gr.Textbox(label="DRS Decision and Debug Log"),
213
+ gr.Video(label="Very Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue Line), Pitch Point (Red), Impact Point (Yellow)")
214
  ],
215
  title="AI-Powered DRS for LBW in Local Cricket",
216
  description="Upload a video clip of a cricket delivery to get an LBW decision and slow-motion replay showing ball detection (green boxes), trajectory (blue line), pitch point (red circle), and impact point (yellow circle)."
217
  )
218
 
219
  if __name__ == "__main__":
220
+ iface.launch()