Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,16 +4,15 @@ import torch
|
|
4 |
from ultralytics import YOLO
|
5 |
import gradio as gr
|
6 |
from scipy.interpolate import interp1d
|
7 |
-
import plotly.graph_objects as go
|
8 |
import uuid
|
9 |
import os
|
10 |
import tempfile
|
11 |
|
12 |
-
# Load YOLOv8 model
|
13 |
model = YOLO("best.pt")
|
14 |
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
|
16 |
-
#
|
17 |
ball_class_index = None
|
18 |
for k, v in model.names.items():
|
19 |
if v.lower() == "cricketball":
|
@@ -26,7 +25,7 @@ if ball_class_index is None:
|
|
26 |
STUMPS_WIDTH = 0.2286
|
27 |
BALL_DIAMETER = 0.073
|
28 |
FRAME_RATE = 20
|
29 |
-
SLOW_MOTION_FACTOR =
|
30 |
CONF_THRESHOLD = 0.2
|
31 |
IMPACT_ZONE_Y = 0.85
|
32 |
IMPACT_DELTA_Y = 50
|
@@ -63,55 +62,17 @@ def process_video(video_path):
|
|
63 |
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
|
64 |
cap.release()
|
65 |
|
66 |
-
if not ball_positions:
|
67 |
-
debug_log.append("No balls detected in any frame")
|
68 |
-
else:
|
69 |
-
debug_log.append(f"Total ball detections: {len(ball_positions)}")
|
70 |
-
debug_log.append(f"Video resolution: {frame_width}x{frame_height}")
|
71 |
-
|
72 |
return frames, ball_positions, detection_frames, "\n".join(debug_log)
|
73 |
|
74 |
def find_bounce_point(ball_coords):
|
75 |
-
"""
|
76 |
-
Detect bounce point using y-derivative reversal with early-frame suppression.
|
77 |
-
Looks for where y increases then decreases (ball hits ground).
|
78 |
-
"""
|
79 |
y_coords = [p[1] for p in ball_coords]
|
80 |
-
min_index = None
|
81 |
-
|
82 |
for i in range(2, len(y_coords) - 2):
|
83 |
dy1 = y_coords[i] - y_coords[i - 1]
|
84 |
dy2 = y_coords[i + 1] - y_coords[i]
|
85 |
if dy1 > 0 and dy2 < 0:
|
86 |
if i > len(y_coords) * 0.2:
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
if min_index is not None:
|
91 |
-
return ball_coords[min_index]
|
92 |
-
|
93 |
-
return ball_coords[len(ball_coords)//2]
|
94 |
-
|
95 |
-
def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point):
|
96 |
-
if not frames or not trajectory or len(ball_positions) < 2:
|
97 |
-
return "Not enough data", trajectory, pitch_point, impact_point
|
98 |
-
|
99 |
-
frame_height, frame_width = frames[0].shape[:2]
|
100 |
-
stumps_x = frame_width / 2
|
101 |
-
stumps_y = frame_height * 0.9
|
102 |
-
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
|
103 |
-
|
104 |
-
pitch_x, _ = pitch_point
|
105 |
-
impact_x, impact_y = impact_point
|
106 |
-
|
107 |
-
if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
|
108 |
-
return f"Not Out (Pitched outside line)", trajectory, pitch_point, impact_point
|
109 |
-
if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
|
110 |
-
return f"Not Out (Impact outside line)", trajectory, pitch_point, impact_point
|
111 |
-
for x, y in trajectory:
|
112 |
-
if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
|
113 |
-
return f"Out (Ball projected to hit stumps)", trajectory, pitch_point, impact_point
|
114 |
-
return f"Not Out (Missing stumps)", trajectory, pitch_point, impact_point
|
115 |
|
116 |
def estimate_trajectory(ball_positions, detection_frames, frame_height, frame_width):
|
117 |
if len(ball_positions) < 2:
|
@@ -149,50 +110,79 @@ def estimate_trajectory(ball_positions, detection_frames, frame_height, frame_wi
|
|
149 |
|
150 |
return trajectory, pitch_point, impact_point, "Trajectory estimated successfully"
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
def generate_replay(frames, trajectory, pitch_point, impact_point, detection_frames):
|
153 |
if not frames or not trajectory:
|
154 |
-
return None
|
155 |
|
156 |
-
temp_file = os.path.join(tempfile.gettempdir(), f"drs_output_{uuid.uuid4()}.mp4")
|
157 |
height, width = frames[0].shape[:2]
|
158 |
-
|
|
|
|
|
|
|
|
|
159 |
|
160 |
min_frame = min(detection_frames)
|
161 |
max_frame = max(detection_frames)
|
162 |
total_frames = max_frame - min_frame + 1
|
163 |
traj_per_frame = max(1, len(trajectory) // total_frames)
|
164 |
-
indices = [min(i * traj_per_frame, len(trajectory)-1) for i in range(total_frames)]
|
165 |
|
166 |
for i, frame in enumerate(frames):
|
|
|
167 |
idx = i - min_frame
|
168 |
if 0 <= idx < len(indices):
|
169 |
end_idx = indices[idx]
|
170 |
-
points = np.array(trajectory[:end_idx+1], dtype=np.int32).reshape((-1, 1, 2))
|
171 |
cv2.polylines(frame, [points], False, (255, 0, 0), 2)
|
|
|
172 |
if pitch_point and i == detection_frames[0]:
|
173 |
cv2.circle(frame, tuple(map(int, pitch_point)), 6, (0, 0, 255), -1)
|
174 |
if impact_point and i == detection_frames[-1]:
|
175 |
cv2.circle(frame, tuple(map(int, impact_point)), 6, (0, 255, 255), -1)
|
176 |
for _ in range(SLOW_MOTION_FACTOR):
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
180 |
|
181 |
def drs_review(video):
|
182 |
frames, ball_positions, detection_frames, debug_log = process_video(video)
|
183 |
if not frames or not ball_positions:
|
184 |
-
return "No frames or detections found.", None
|
185 |
|
186 |
frame_height, frame_width = frames[0].shape[:2]
|
187 |
trajectory, pitch_point, impact_point, log = estimate_trajectory(ball_positions, detection_frames, frame_height, frame_width)
|
188 |
if not trajectory:
|
189 |
-
return f"{log}\n{debug_log}", None
|
190 |
|
191 |
decision, _, _, _ = lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point)
|
192 |
-
|
193 |
|
194 |
result_log = f"DRS Decision: {decision}\n\n{log}\n\n{debug_log}"
|
195 |
-
return result_log,
|
196 |
|
197 |
# Gradio Interface
|
198 |
iface = gr.Interface(
|
@@ -200,10 +190,11 @@ iface = gr.Interface(
|
|
200 |
inputs=gr.Video(label="Upload Cricket Delivery Video"),
|
201 |
outputs=[
|
202 |
gr.Textbox(label="DRS Result and Debug Info"),
|
203 |
-
gr.Video(label="Replay
|
|
|
204 |
],
|
205 |
title="GullyDRS - AI-Powered LBW Review",
|
206 |
-
description="Upload a cricket delivery video. The system will track the ball, estimate trajectory, and return
|
207 |
)
|
208 |
|
209 |
if __name__ == "__main__":
|
|
|
4 |
from ultralytics import YOLO
|
5 |
import gradio as gr
|
6 |
from scipy.interpolate import interp1d
|
|
|
7 |
import uuid
|
8 |
import os
|
9 |
import tempfile
|
10 |
|
11 |
+
# Load YOLOv8 model
|
12 |
model = YOLO("best.pt")
|
13 |
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
14 |
|
15 |
+
# Resolve class index for cricket ball
|
16 |
ball_class_index = None
|
17 |
for k, v in model.names.items():
|
18 |
if v.lower() == "cricketball":
|
|
|
25 |
STUMPS_WIDTH = 0.2286
|
26 |
BALL_DIAMETER = 0.073
|
27 |
FRAME_RATE = 20
|
28 |
+
SLOW_MOTION_FACTOR = 2 # Set to 1 for normal speed replay
|
29 |
CONF_THRESHOLD = 0.2
|
30 |
IMPACT_ZONE_Y = 0.85
|
31 |
IMPACT_DELTA_Y = 50
|
|
|
62 |
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
|
63 |
cap.release()
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
return frames, ball_positions, detection_frames, "\n".join(debug_log)
|
66 |
|
67 |
def find_bounce_point(ball_coords):
|
|
|
|
|
|
|
|
|
68 |
y_coords = [p[1] for p in ball_coords]
|
|
|
|
|
69 |
for i in range(2, len(y_coords) - 2):
|
70 |
dy1 = y_coords[i] - y_coords[i - 1]
|
71 |
dy2 = y_coords[i + 1] - y_coords[i]
|
72 |
if dy1 > 0 and dy2 < 0:
|
73 |
if i > len(y_coords) * 0.2:
|
74 |
+
return ball_coords[i]
|
75 |
+
return ball_coords[len(ball_coords) // 2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
def estimate_trajectory(ball_positions, detection_frames, frame_height, frame_width):
|
78 |
if len(ball_positions) < 2:
|
|
|
110 |
|
111 |
return trajectory, pitch_point, impact_point, "Trajectory estimated successfully"
|
112 |
|
113 |
+
def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point):
|
114 |
+
if not frames or not trajectory or len(ball_positions) < 2:
|
115 |
+
return "Not enough data", trajectory, pitch_point, impact_point
|
116 |
+
|
117 |
+
frame_height, frame_width = frames[0].shape[:2]
|
118 |
+
stumps_x = frame_width / 2
|
119 |
+
stumps_y = frame_height * 0.9
|
120 |
+
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
|
121 |
+
|
122 |
+
pitch_x, _ = pitch_point
|
123 |
+
impact_x, impact_y = impact_point
|
124 |
+
|
125 |
+
if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
|
126 |
+
return f"Not Out (Pitched outside line)", trajectory, pitch_point, impact_point
|
127 |
+
if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
|
128 |
+
return f"Not Out (Impact outside line)", trajectory, pitch_point, impact_point
|
129 |
+
for x, y in trajectory:
|
130 |
+
if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
|
131 |
+
return f"Out (Ball projected to hit stumps)", trajectory, pitch_point, impact_point
|
132 |
+
return f"Not Out (Missing stumps)", trajectory, pitch_point, impact_point
|
133 |
+
|
134 |
def generate_replay(frames, trajectory, pitch_point, impact_point, detection_frames):
|
135 |
if not frames or not trajectory:
|
136 |
+
return None, None
|
137 |
|
|
|
138 |
height, width = frames[0].shape[:2]
|
139 |
+
slow_path = os.path.join(tempfile.gettempdir(), f"drs_slow_{uuid.uuid4()}.mp4")
|
140 |
+
normal_path = os.path.join(tempfile.gettempdir(), f"drs_normal_{uuid.uuid4()}.mp4")
|
141 |
+
|
142 |
+
slow_writer = cv2.VideoWriter(slow_path, cv2.VideoWriter_fourcc(*'mp4v'), FRAME_RATE / SLOW_MOTION_FACTOR, (width, height))
|
143 |
+
normal_writer = cv2.VideoWriter(normal_path, cv2.VideoWriter_fourcc(*'mp4v'), FRAME_RATE, (width, height))
|
144 |
|
145 |
min_frame = min(detection_frames)
|
146 |
max_frame = max(detection_frames)
|
147 |
total_frames = max_frame - min_frame + 1
|
148 |
traj_per_frame = max(1, len(trajectory) // total_frames)
|
149 |
+
indices = [min(i * traj_per_frame, len(trajectory) - 1) for i in range(total_frames)]
|
150 |
|
151 |
for i, frame in enumerate(frames):
|
152 |
+
frame_copy = frame.copy()
|
153 |
idx = i - min_frame
|
154 |
if 0 <= idx < len(indices):
|
155 |
end_idx = indices[idx]
|
156 |
+
points = np.array(trajectory[:end_idx + 1], dtype=np.int32).reshape((-1, 1, 2))
|
157 |
cv2.polylines(frame, [points], False, (255, 0, 0), 2)
|
158 |
+
cv2.polylines(frame_copy, [points], False, (255, 0, 0), 2)
|
159 |
if pitch_point and i == detection_frames[0]:
|
160 |
cv2.circle(frame, tuple(map(int, pitch_point)), 6, (0, 0, 255), -1)
|
161 |
if impact_point and i == detection_frames[-1]:
|
162 |
cv2.circle(frame, tuple(map(int, impact_point)), 6, (0, 255, 255), -1)
|
163 |
for _ in range(SLOW_MOTION_FACTOR):
|
164 |
+
slow_writer.write(frame)
|
165 |
+
normal_writer.write(frame_copy)
|
166 |
+
|
167 |
+
slow_writer.release()
|
168 |
+
normal_writer.release()
|
169 |
+
return slow_path, normal_path
|
170 |
|
171 |
def drs_review(video):
|
172 |
frames, ball_positions, detection_frames, debug_log = process_video(video)
|
173 |
if not frames or not ball_positions:
|
174 |
+
return "No frames or detections found.", None, None
|
175 |
|
176 |
frame_height, frame_width = frames[0].shape[:2]
|
177 |
trajectory, pitch_point, impact_point, log = estimate_trajectory(ball_positions, detection_frames, frame_height, frame_width)
|
178 |
if not trajectory:
|
179 |
+
return f"{log}\n{debug_log}", None, None
|
180 |
|
181 |
decision, _, _, _ = lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point)
|
182 |
+
slow_path, normal_path = generate_replay(frames, trajectory, pitch_point, impact_point, detection_frames)
|
183 |
|
184 |
result_log = f"DRS Decision: {decision}\n\n{log}\n\n{debug_log}"
|
185 |
+
return result_log, slow_path, normal_path
|
186 |
|
187 |
# Gradio Interface
|
188 |
iface = gr.Interface(
|
|
|
190 |
inputs=gr.Video(label="Upload Cricket Delivery Video"),
|
191 |
outputs=[
|
192 |
gr.Textbox(label="DRS Result and Debug Info"),
|
193 |
+
gr.Video(label="Slow-Motion Replay"),
|
194 |
+
gr.Video(label="Normal-Speed Trajectory Only")
|
195 |
],
|
196 |
title="GullyDRS - AI-Powered LBW Review",
|
197 |
+
description="Upload a cricket delivery video. The system will track the ball, estimate trajectory, and return both slow-motion and normal-speed replays."
|
198 |
)
|
199 |
|
200 |
if __name__ == "__main__":
|