Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,28 +3,39 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from ultralytics import YOLO
|
5 |
import gradio as gr
|
6 |
-
from scipy.interpolate import interp1d
|
|
|
7 |
import uuid
|
8 |
import os
|
9 |
|
10 |
-
# Load the trained YOLOv8n model
|
11 |
model = YOLO("best.pt")
|
|
|
12 |
|
13 |
# Constants for LBW decision and video processing
|
14 |
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
|
15 |
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
|
16 |
-
FRAME_RATE = 20 # Input video frame rate
|
17 |
-
SLOW_MOTION_FACTOR = 3 #
|
18 |
-
CONF_THRESHOLD = 0.
|
19 |
-
IMPACT_ZONE_Y = 0.85 # Fraction of frame height where impact is likely
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def process_video(video_path):
|
22 |
if not os.path.exists(video_path):
|
23 |
return [], [], [], "Error: Video file not found"
|
24 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
25 |
frames = []
|
26 |
ball_positions = []
|
27 |
-
detection_frames = []
|
28 |
debug_log = []
|
29 |
|
30 |
frame_count = 0
|
@@ -34,15 +45,17 @@ def process_video(video_path):
|
|
34 |
break
|
35 |
frame_count += 1
|
36 |
frames.append(frame.copy())
|
37 |
-
|
|
|
38 |
detections = 0
|
39 |
for detection in results[0].boxes:
|
40 |
-
if detection.cls == 0: #
|
41 |
detections += 1
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
frames[-1] = frame
|
47 |
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
|
48 |
cap.release()
|
@@ -51,54 +64,164 @@ def process_video(video_path):
|
|
51 |
debug_log.append("No balls detected in any frame")
|
52 |
else:
|
53 |
debug_log.append(f"Total ball detections: {len(ball_positions)}")
|
|
|
54 |
|
55 |
return frames, ball_positions, detection_frames, "\n".join(debug_log)
|
56 |
|
57 |
-
def
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
# Use cubic spline interpolation to smooth the trajectory
|
67 |
-
try:
|
68 |
-
spline_x = CubicSpline(times, x_coords, bc_type='natural')
|
69 |
-
spline_y = CubicSpline(times, y_coords, bc_type='natural')
|
70 |
-
except Exception as e:
|
71 |
-
return None, f"Error in trajectory smoothing: {str(e)}"
|
72 |
-
|
73 |
-
# Project trajectory (detected + future for LBW decision)
|
74 |
-
t_full = np.linspace(times[0], times[-1] + 0.5, len(times) + 10)
|
75 |
-
x_full = spline_x(t_full)
|
76 |
-
y_full = spline_y(t_full)
|
77 |
-
trajectory = list(zip(x_full, y_full))
|
78 |
|
79 |
-
|
|
|
|
|
|
|
80 |
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
pitch_point = None
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
impact_zone_y_min = frame_height * 0.80
|
90 |
-
impact_zone_y_max = frame_height * 0.85
|
91 |
-
|
92 |
-
# Detect pitch and impact points
|
93 |
-
for i, (x, y) in enumerate(ball_positions):
|
94 |
-
if y > pitch_threshold_y and not pitch_point:
|
95 |
-
pitch_point = (x, y) # Ball has hit the ground
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point):
|
104 |
if not frames:
|
@@ -108,105 +231,101 @@ def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point):
|
|
108 |
|
109 |
frame_height, frame_width = frames[0].shape[:2]
|
110 |
stumps_x = frame_width / 2
|
111 |
-
stumps_y = frame_height * 0.9
|
112 |
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
|
113 |
|
114 |
pitch_x, pitch_y = pitch_point
|
115 |
impact_x, impact_y = impact_point
|
116 |
|
117 |
-
# Check pitching point - the ball should land between stumps
|
118 |
if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
|
119 |
return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", trajectory, pitch_point, impact_point
|
120 |
-
|
121 |
-
# Check impact point - the ball should hit within the stumps area
|
122 |
if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
|
123 |
return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
|
124 |
-
|
125 |
-
# Check trajectory hitting stumps
|
126 |
for x, y in trajectory:
|
127 |
if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
|
128 |
return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
|
129 |
-
|
130 |
return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
|
131 |
|
132 |
-
def generate_slow_motion(frames, trajectory, pitch_point, impact_point, detection_frames, output_path):
|
133 |
if not frames:
|
134 |
return None
|
|
|
135 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
136 |
-
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
for i, frame in enumerate(frames):
|
144 |
-
|
145 |
-
if
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
if pitch_point and
|
150 |
x, y = pitch_point
|
151 |
-
if y > frame.shape[0] * 0.75: # Adjust this threshold for the ground position
|
152 |
-
pitch_point_detected = True
|
153 |
-
if pitch_point_detected:
|
154 |
cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1)
|
155 |
cv2.putText(frame, "Pitch Point", (int(x) + 10, int(y) - 10),
|
156 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
157 |
-
|
158 |
-
# Draw impact point (yellow circle with label) when ball is near stumps
|
159 |
-
if impact_point and not impact_point_detected:
|
160 |
x, y = impact_point
|
161 |
-
if y > frame.shape[0] * 0.85: # Adjust this threshold for impact point
|
162 |
-
impact_point_detected = True
|
163 |
-
if impact_point_detected:
|
164 |
cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), -1)
|
165 |
cv2.putText(frame, "Impact Point", (int(x) + 10, int(y) + 20),
|
166 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
|
167 |
-
|
168 |
-
# Add wicket lines for the stumps
|
169 |
-
stumps_x = frame.shape[1] // 2
|
170 |
-
stumps_y = frame.shape[0] * 0.9
|
171 |
-
stumps_width = frame.shape[1] * 0.1
|
172 |
-
cv2.line(frame, (int(stumps_x - stumps_width / 2), int(stumps_y)),
|
173 |
-
(int(stumps_x + stumps_width / 2), int(stumps_y)), (0, 255, 0), 3)
|
174 |
-
|
175 |
-
# Write frames to output video
|
176 |
for _ in range(SLOW_MOTION_FACTOR):
|
177 |
out.write(frame)
|
178 |
-
|
179 |
out.release()
|
180 |
return output_path
|
181 |
|
182 |
def drs_review(video):
|
183 |
frames, ball_positions, detection_frames, debug_log = process_video(video)
|
184 |
if not frames:
|
185 |
-
return f"Error: Failed to process video", None
|
186 |
-
|
187 |
-
trajectory, smoothing_log = smooth_trajectory(ball_positions, frames)
|
188 |
|
189 |
-
|
190 |
-
|
|
|
|
|
191 |
|
192 |
-
decision,
|
193 |
|
194 |
output_path = f"output_{uuid.uuid4()}.mp4"
|
195 |
-
slow_motion_path = generate_slow_motion(frames,
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
|
|
|
|
|
|
|
|
198 |
|
199 |
# Gradio interface
|
200 |
iface = gr.Interface(
|
201 |
fn=drs_review,
|
202 |
inputs=gr.Video(label="Upload Video Clip"),
|
203 |
outputs=[
|
204 |
-
gr.Textbox(label="DRS Decision"),
|
205 |
-
gr.Video(label="Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue Line), Pitch Point (Red), Impact Point (Yellow)
|
|
|
|
|
206 |
],
|
207 |
title="AI-Powered DRS for LBW in Local Cricket",
|
208 |
-
description="Upload a video clip of a cricket delivery to get an LBW decision
|
209 |
)
|
210 |
|
211 |
if __name__ == "__main__":
|
212 |
-
iface.launch()
|
|
|
3 |
import torch
|
4 |
from ultralytics import YOLO
|
5 |
import gradio as gr
|
6 |
+
from scipy.interpolate import interp1d
|
7 |
+
import plotly.graph_objects as go
|
8 |
import uuid
|
9 |
import os
|
10 |
|
11 |
+
# Load the trained YOLOv8n model with optimizations
|
12 |
model = YOLO("best.pt")
|
13 |
+
model.to('cuda' if torch.cuda.is_available() else 'cpu') # Use GPU if available
|
14 |
|
15 |
# Constants for LBW decision and video processing
|
16 |
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
|
17 |
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
|
18 |
+
FRAME_RATE = 20 # Input video frame rate
|
19 |
+
SLOW_MOTION_FACTOR = 3 # For very slow motion (3x slower)
|
20 |
+
CONF_THRESHOLD = 0.2 # Confidence threshold
|
21 |
+
IMPACT_ZONE_Y = 0.85 # Fraction of frame height where impact is likely
|
22 |
+
IMPACT_DELTA_Y = 50 # Pixels for detecting sudden y-position change
|
23 |
+
PITCH_LENGTH = 20.12 # meters (standard cricket pitch length)
|
24 |
+
STUMPS_HEIGHT = 0.71 # meters (stumps height)
|
25 |
+
CAMERA_HEIGHT = 2.0 # meters (assumed camera height)
|
26 |
+
CAMERA_DISTANCE = 10.0 # meters (assumed camera distance from pitch)
|
27 |
+
MAX_POSITION_JUMP = 30 # Pixels, tightened for continuous trajectory
|
28 |
|
29 |
def process_video(video_path):
|
30 |
if not os.path.exists(video_path):
|
31 |
return [], [], [], "Error: Video file not found"
|
32 |
cap = cv2.VideoCapture(video_path)
|
33 |
+
# Get native video resolution
|
34 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
35 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
36 |
frames = []
|
37 |
ball_positions = []
|
38 |
+
detection_frames = []
|
39 |
debug_log = []
|
40 |
|
41 |
frame_count = 0
|
|
|
45 |
break
|
46 |
frame_count += 1
|
47 |
frames.append(frame.copy())
|
48 |
+
# Use native resolution for inference
|
49 |
+
results = model.predict(frame, conf=CONF_THRESHOLD, imgsz=(frame_height, frame_width), iou=0.5, max_det=1)
|
50 |
detections = 0
|
51 |
for detection in results[0].boxes:
|
52 |
+
if detection.cls == 0: # Class 0 is the ball
|
53 |
detections += 1
|
54 |
+
if detections == 1: # Only consider frames with exactly one detection
|
55 |
+
x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
|
56 |
+
ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
|
57 |
+
detection_frames.append(frame_count - 1)
|
58 |
+
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
59 |
frames[-1] = frame
|
60 |
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
|
61 |
cap.release()
|
|
|
64 |
debug_log.append("No balls detected in any frame")
|
65 |
else:
|
66 |
debug_log.append(f"Total ball detections: {len(ball_positions)}")
|
67 |
+
debug_log.append(f"Video resolution: {frame_width}x{frame_height}")
|
68 |
|
69 |
return frames, ball_positions, detection_frames, "\n".join(debug_log)
|
70 |
|
71 |
+
def pixel_to_3d(x, y, frame_height, frame_width):
|
72 |
+
"""Convert 2D pixel coordinates to 3D real-world coordinates."""
|
73 |
+
x_norm = x / frame_width
|
74 |
+
y_norm = y / frame_height
|
75 |
+
x_3d = (x_norm - 0.5) * 3.0 # Center x at 0 (middle of pitch)
|
76 |
+
y_3d = y_norm * PITCH_LENGTH
|
77 |
+
z_3d = (1 - y_norm) * BALL_DIAMETER * 5 # Scale to approximate ball bounce height
|
78 |
+
return x_3d, y_3d, z_3d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
def estimate_trajectory(ball_positions, frames, detection_frames):
|
81 |
+
if len(ball_positions) < 2:
|
82 |
+
return None, None, None, None, None, None, None, None, None, "Error: Fewer than 2 ball detections for trajectory"
|
83 |
+
frame_height, frame_width = frames[0].shape[:2]
|
84 |
|
85 |
+
# Filter out sudden changes in position for continuous trajectory
|
86 |
+
filtered_positions = [ball_positions[0]]
|
87 |
+
filtered_frames = [detection_frames[0]]
|
88 |
+
for i in range(1, len(ball_positions)):
|
89 |
+
prev_pos = filtered_positions[-1]
|
90 |
+
curr_pos = ball_positions[i]
|
91 |
+
distance = np.sqrt((curr_pos[0] - prev_pos[0])**2 + (curr_pos[1] - prev_pos[1])**2)
|
92 |
+
if distance <= MAX_POSITION_JUMP:
|
93 |
+
filtered_positions.append(curr_pos)
|
94 |
+
filtered_frames.append(detection_frames[i])
|
95 |
+
else:
|
96 |
+
# Skip sudden jumps to maintain continuity
|
97 |
+
continue
|
98 |
+
|
99 |
+
if len(filtered_positions) < 2:
|
100 |
+
return None, None, None, None, None, None, None, None, None, "Error: Fewer than 2 valid ball detections after filtering"
|
101 |
+
|
102 |
+
x_coords = [pos[0] for pos in filtered_positions]
|
103 |
+
y_coords = [pos[1] for pos in filtered_positions]
|
104 |
+
times = np.array(filtered_frames) / FRAME_RATE
|
105 |
+
|
106 |
+
# Pitch point detection: Assume it happens when the ball reaches a certain low point on the y-axis
|
107 |
pitch_point = None
|
108 |
+
pitch_frame = None
|
109 |
+
for i in range(1, len(y_coords)):
|
110 |
+
if y_coords[i] > frame_height * 0.75: # The ball reaches near the ground
|
111 |
+
pitch_point = filtered_positions[i]
|
112 |
+
pitch_frame = filtered_frames[i]
|
113 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
# Impact point detection: Look for sudden changes in the y-position (delta_y) or when ball enters impact zone
|
116 |
+
impact_idx = None
|
117 |
+
impact_frame = None
|
118 |
+
for i in range(1, len(y_coords)):
|
119 |
+
delta_y = abs(y_coords[i] - y_coords[i-1])
|
120 |
+
if delta_y > IMPACT_DELTA_Y:
|
121 |
+
impact_idx = i
|
122 |
+
impact_frame = filtered_frames[i]
|
123 |
+
break
|
124 |
+
elif y_coords[i] > frame_height * IMPACT_ZONE_Y:
|
125 |
+
impact_idx = i
|
126 |
+
impact_frame = filtered_frames[i]
|
127 |
+
break
|
128 |
+
if impact_idx is None:
|
129 |
+
impact_idx = len(filtered_positions) - 1
|
130 |
+
impact_frame = filtered_frames[-1]
|
131 |
+
impact_point = filtered_positions[impact_idx]
|
132 |
|
133 |
+
try:
|
134 |
+
# Use cubic interpolation for smoother trajectory
|
135 |
+
fx = interp1d(times[:impact_idx + 1], x_coords[:impact_idx + 1], kind='cubic', fill_value="extrapolate")
|
136 |
+
fy = interp1d(times[:impact_idx + 1], y_coords[:impact_idx + 1], kind='cubic', fill_value="extrapolate")
|
137 |
+
except Exception as e:
|
138 |
+
return None, None, None, None, None, None, None, None, None, f"Error in trajectory interpolation: {str(e)}"
|
139 |
+
|
140 |
+
# Generate dense points for all frames between first and last detection
|
141 |
+
total_frames = max(detection_frames) - min(detection_frames) + 1
|
142 |
+
t_full = np.linspace(times[0], times[-1], total_frames * SLOW_MOTION_FACTOR)
|
143 |
+
x_full = fx(t_full)
|
144 |
+
y_full = fy(t_full)
|
145 |
+
trajectory_2d = list(zip(x_full, y_full))
|
146 |
+
|
147 |
+
trajectory_3d = [pixel_to_3d(x, y, frame_height, frame_width) for x, y in trajectory_2d]
|
148 |
+
detections_3d = [pixel_to_3d(x, y, frame_height, frame_width) for x, y in filtered_positions]
|
149 |
+
pitch_point_3d = pixel_to_3d(pitch_point[0], pitch_point[1], frame_height, frame_width) if pitch_point else None
|
150 |
+
impact_point_3d = pixel_to_3d(impact_point[0], impact_point[1], frame_height, frame_width) if impact_point else None
|
151 |
+
|
152 |
+
debug_log = (
|
153 |
+
f"Trajectory estimated successfully\n"
|
154 |
+
f"Pitch point at frame {pitch_frame + 1}: ({pitch_point[0]:.1f}, {pitch_point[1]:.1f})\n"
|
155 |
+
f"Impact point at frame {impact_frame + 1}: ({impact_point[0]:.1f}, {impact_point[1]:.1f})\n"
|
156 |
+
f"Detections in frames: {filtered_frames}"
|
157 |
+
)
|
158 |
+
return trajectory_2d, pitch_point, impact_point, pitch_frame, impact_frame, detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, debug_log
|
159 |
+
|
160 |
+
def create_3d_plot(detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, plot_type="detections"):
|
161 |
+
"""Create 3D Plotly visualization for detections or trajectory using single-detection frames."""
|
162 |
+
stump_x = [-STUMPS_WIDTH/2, STUMPS_WIDTH/2, 0]
|
163 |
+
stump_y = [PITCH_LENGTH, PITCH_LENGTH, PITCH_LENGTH]
|
164 |
+
stump_z = [0, 0, 0]
|
165 |
+
stump_top_z = [STUMPS_HEIGHT, STUMPS_HEIGHT, STUMPS_HEIGHT]
|
166 |
+
bail_x = [-STUMPS_WIDTH/2, STUMPS_WIDTH/2]
|
167 |
+
bail_y = [PITCH_LENGTH, PITCH_LENGTH]
|
168 |
+
bail_z = [STUMPS_HEIGHT, STUMPS_HEIGHT]
|
169 |
+
|
170 |
+
stump_traces = []
|
171 |
+
for i in range(3):
|
172 |
+
stump_traces.append(go.Scatter3d(
|
173 |
+
x=[stump_x[i], stump_x[i]], y=[stump_y[i], stump_y[i]], z=[stump_z[i], stump_top_z[i]],
|
174 |
+
mode='lines', line=dict(color='black', width=5), name=f'Stump {i+1}'
|
175 |
+
))
|
176 |
+
bail_traces = [
|
177 |
+
go.Scatter3d(
|
178 |
+
x=bail_x, y=bail_y, z=bail_z,
|
179 |
+
mode='lines', line=dict(color='black', width=5), name='Bail'
|
180 |
+
)
|
181 |
+
]
|
182 |
+
|
183 |
+
pitch_scatter = go.Scatter3d(
|
184 |
+
x=[pitch_point_3d[0]] if pitch_point_3d else [],
|
185 |
+
y=[pitch_point_3d[1]] if pitch_point_3d else [],
|
186 |
+
z=[pitch_point_3d[2]] if pitch_point_3d else [],
|
187 |
+
mode='markers', marker=dict(size=8, color='red'), name='Pitch Point'
|
188 |
+
)
|
189 |
+
impact_scatter = go.Scatter3d(
|
190 |
+
x=[impact_point_3d[0]] if impact_point_3d else [],
|
191 |
+
y=[impact_point_3d[1]] if impact_point_3d else [],
|
192 |
+
z=[impact_point_3d[2]] if impact_point_3d else [],
|
193 |
+
mode='markers', marker=dict(size=8, color='yellow'), name='Impact Point'
|
194 |
+
)
|
195 |
+
|
196 |
+
if plot_type == "detections":
|
197 |
+
x, y, z = zip(*detections_3d) if detections_3d else ([], [], [])
|
198 |
+
scatter = go.Scatter3d(
|
199 |
+
x=x, y=y, z=z, mode='markers',
|
200 |
+
marker=dict(size=5, color='green'), name='Single Ball Detections'
|
201 |
+
)
|
202 |
+
data = [scatter, pitch_scatter, impact_scatter] + stump_traces + bail_traces
|
203 |
+
title = "3D Single Ball Detections"
|
204 |
+
else:
|
205 |
+
x, y, z = zip(*trajectory_3d) if trajectory_3d else ([], [], [])
|
206 |
+
trajectory_line = go.Scatter3d(
|
207 |
+
x=x, y=y, z=z, mode='lines',
|
208 |
+
line=dict(color='blue', width=4), name='Ball Trajectory (Single Detections)'
|
209 |
+
)
|
210 |
+
data = [trajectory_line, pitch_scatter, impact_scatter] + stump_traces + bail_traces
|
211 |
+
title = "3D Ball Trajectory (Single Detections)"
|
212 |
+
|
213 |
+
layout = go.Layout(
|
214 |
+
title=title,
|
215 |
+
scene=dict(
|
216 |
+
xaxis_title='X (meters)', yaxis_title='Y (meters)', zaxis_title='Z (meters)',
|
217 |
+
xaxis=dict(range=[-1.5, 1.5]), yaxis=dict(range=[0, PITCH_LENGTH]),
|
218 |
+
zaxis=dict(range=[0, STUMPS_HEIGHT * 2]), aspectmode='manual',
|
219 |
+
aspectratio=dict(x=1, y=4, z=0.5)
|
220 |
+
),
|
221 |
+
showlegend=True
|
222 |
+
)
|
223 |
+
fig = go.Figure(data=data, layout=layout)
|
224 |
+
return fig
|
225 |
|
226 |
def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point):
|
227 |
if not frames:
|
|
|
231 |
|
232 |
frame_height, frame_width = frames[0].shape[:2]
|
233 |
stumps_x = frame_width / 2
|
234 |
+
stumps_y = frame_height * 0.9
|
235 |
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
|
236 |
|
237 |
pitch_x, pitch_y = pitch_point
|
238 |
impact_x, impact_y = impact_point
|
239 |
|
|
|
240 |
if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
|
241 |
return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", trajectory, pitch_point, impact_point
|
|
|
|
|
242 |
if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
|
243 |
return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
|
|
|
|
|
244 |
for x, y in trajectory:
|
245 |
if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
|
246 |
return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
|
|
|
247 |
return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
|
248 |
|
249 |
+
def generate_slow_motion(frames, trajectory, pitch_point, impact_point, detection_frames, pitch_frame, impact_frame, output_path):
|
250 |
if not frames:
|
251 |
return None
|
252 |
+
frame_height, frame_width = frames[0].shape[:2]
|
253 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
254 |
+
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frame_width, frame_height))
|
255 |
+
|
256 |
+
# Map trajectory points to all frames between first and last detection
|
257 |
+
if trajectory and detection_frames:
|
258 |
+
min_frame = min(detection_frames)
|
259 |
+
max_frame = max(detection_frames)
|
260 |
+
total_frames = max_frame - min_frame + 1
|
261 |
+
trajectory_points = np.array(trajectory, dtype=np.int32).reshape((-1, 1, 2))
|
262 |
+
traj_per_frame = len(trajectory) // total_frames
|
263 |
+
trajectory_indices = [i * traj_per_frame for i in range(total_frames)]
|
264 |
+
else:
|
265 |
+
trajectory_points = np.array([], dtype=np.int32)
|
266 |
+
trajectory_indices = []
|
267 |
|
268 |
for i, frame in enumerate(frames):
|
269 |
+
frame_idx = i - min_frame if trajectory_indices else -1
|
270 |
+
if frame_idx >= 0 and frame_idx < total_frames and trajectory_points.size > 0:
|
271 |
+
# Draw trajectory up to current frame
|
272 |
+
end_idx = trajectory_indices[frame_idx] + 1
|
273 |
+
cv2.polylines(frame, [trajectory_points[:end_idx]], False, (255, 0, 0), 2)
|
274 |
+
if pitch_point and i == pitch_frame:
|
275 |
x, y = pitch_point
|
|
|
|
|
|
|
276 |
cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1)
|
277 |
cv2.putText(frame, "Pitch Point", (int(x) + 10, int(y) - 10),
|
278 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
279 |
+
if impact_point and i == impact_frame:
|
|
|
|
|
280 |
x, y = impact_point
|
|
|
|
|
|
|
281 |
cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), -1)
|
282 |
cv2.putText(frame, "Impact Point", (int(x) + 10, int(y) + 20),
|
283 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
for _ in range(SLOW_MOTION_FACTOR):
|
285 |
out.write(frame)
|
|
|
286 |
out.release()
|
287 |
return output_path
|
288 |
|
289 |
def drs_review(video):
|
290 |
frames, ball_positions, detection_frames, debug_log = process_video(video)
|
291 |
if not frames:
|
292 |
+
return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None, None, None
|
|
|
|
|
293 |
|
294 |
+
trajectory_2d, pitch_point, impact_point, pitch_frame, impact_frame, detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, trajectory_log = estimate_trajectory(ball_positions, frames, detection_frames)
|
295 |
+
|
296 |
+
if trajectory_2d is None:
|
297 |
+
return (f"Error: {trajectory_log}\nDebug Log:\n{debug_log}", None, None, None)
|
298 |
|
299 |
+
decision, trajectory_2d, pitch_point, impact_point = lbw_decision(ball_positions, trajectory_2d, frames, pitch_point, impact_point)
|
300 |
|
301 |
output_path = f"output_{uuid.uuid4()}.mp4"
|
302 |
+
slow_motion_path = generate_slow_motion(frames, trajectory_2d, pitch_point, impact_point, detection_frames, pitch_frame, impact_frame, output_path)
|
303 |
+
|
304 |
+
detections_fig = None
|
305 |
+
trajectory_fig = None
|
306 |
+
if detections_3d:
|
307 |
+
detections_fig = create_3d_plot(detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, "detections")
|
308 |
+
trajectory_fig = create_3d_plot(detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, "trajectory")
|
309 |
|
310 |
+
debug_output = f"{debug_log}\n{trajectory_log}"
|
311 |
+
return (f"DRS Decision: {decision}\nDebug Log:\n{debug_output}",
|
312 |
+
slow_motion_path,
|
313 |
+
detections_fig,
|
314 |
+
trajectory_fig)
|
315 |
|
316 |
# Gradio interface
|
317 |
iface = gr.Interface(
|
318 |
fn=drs_review,
|
319 |
inputs=gr.Video(label="Upload Video Clip"),
|
320 |
outputs=[
|
321 |
+
gr.Textbox(label="DRS Decision and Debug Log"),
|
322 |
+
gr.Video(label="Very Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue Line), Pitch Point (Red), Impact Point (Yellow)"),
|
323 |
+
gr.Plot(label="3D Single Ball Detections Plot"),
|
324 |
+
gr.Plot(label="3D Ball Trajectory Plot (Single Detections)")
|
325 |
],
|
326 |
title="AI-Powered DRS for LBW in Local Cricket",
|
327 |
+
description="Upload a video clip of a cricket delivery to get an LBW decision, a slow-motion replay, and 3D visualizations. The replay shows ball detection (green boxes), trajectory (blue line), pitch point (red circle), and impact point (yellow circle). The 3D plots show single-detection frames (green markers) and trajectory (blue line) with wicket lines (black), pitch point (red), and impact point (yellow)."
|
328 |
)
|
329 |
|
330 |
if __name__ == "__main__":
|
331 |
+
iface.launch()
|