Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import torch
|
|
4 |
from ultralytics import YOLO
|
5 |
import gradio as gr
|
6 |
from scipy.interpolate import interp1d
|
|
|
7 |
import uuid
|
8 |
import os
|
9 |
|
@@ -14,24 +15,25 @@ model.to('cuda' if torch.cuda.is_available() else 'cpu') # Use GPU if available
|
|
14 |
# Constants for LBW decision and video processing
|
15 |
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
|
16 |
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
|
17 |
-
FRAME_RATE = 20 # Input video frame rate
|
18 |
SLOW_MOTION_FACTOR = 3 # For very slow motion (3x slower)
|
19 |
-
CONF_THRESHOLD = 0.
|
20 |
-
IMPACT_ZONE_Y = 0.
|
21 |
-
|
22 |
PITCH_LENGTH = 20.12 # meters (standard cricket pitch length)
|
23 |
STUMPS_HEIGHT = 0.71 # meters (stumps height)
|
24 |
CAMERA_HEIGHT = 2.0 # meters (assumed camera height)
|
25 |
CAMERA_DISTANCE = 10.0 # meters (assumed camera distance from pitch)
|
26 |
-
MAX_POSITION_JUMP =
|
27 |
|
28 |
def process_video(video_path):
|
29 |
if not os.path.exists(video_path):
|
30 |
return [], [], [], "Error: Video file not found"
|
31 |
cap = cv2.VideoCapture(video_path)
|
32 |
-
# Get native video resolution
|
33 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
34 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
35 |
frames = []
|
36 |
ball_positions = []
|
37 |
detection_frames = []
|
@@ -44,8 +46,9 @@ def process_video(video_path):
|
|
44 |
break
|
45 |
frame_count += 1
|
46 |
frames.append(frame.copy())
|
47 |
-
#
|
48 |
-
|
|
|
49 |
detections = 0
|
50 |
for detection in results[0].boxes:
|
51 |
if detection.cls == 0: # Class 0 is the ball
|
@@ -57,6 +60,8 @@ def process_video(video_path):
|
|
57 |
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
58 |
frames[-1] = frame
|
59 |
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
|
|
|
|
|
60 |
cap.release()
|
61 |
|
62 |
if not ball_positions:
|
@@ -64,6 +69,7 @@ def process_video(video_path):
|
|
64 |
else:
|
65 |
debug_log.append(f"Total ball detections: {len(ball_positions)}")
|
66 |
debug_log.append(f"Video resolution: {frame_width}x{frame_height}")
|
|
|
67 |
|
68 |
return frames, ball_positions, detection_frames, "\n".join(debug_log)
|
69 |
|
@@ -92,7 +98,6 @@ def estimate_trajectory(ball_positions, frames, detection_frames):
|
|
92 |
filtered_positions.append(curr_pos)
|
93 |
filtered_frames.append(detection_frames[i])
|
94 |
else:
|
95 |
-
# Skip sudden jumps to maintain continuity
|
96 |
continue
|
97 |
|
98 |
if len(filtered_positions) < 2:
|
@@ -102,21 +107,21 @@ def estimate_trajectory(ball_positions, frames, detection_frames):
|
|
102 |
y_coords = [pos[1] for pos in filtered_positions]
|
103 |
times = np.array(filtered_frames) / FRAME_RATE
|
104 |
|
105 |
-
#
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
break
|
113 |
|
114 |
-
# Impact point
|
115 |
impact_idx = None
|
116 |
impact_frame = None
|
|
|
|
|
117 |
for i in range(1, len(y_coords)):
|
118 |
-
|
119 |
-
if delta_y > IMPACT_DELTA_Y:
|
120 |
impact_idx = i
|
121 |
impact_frame = filtered_frames[i]
|
122 |
break
|
@@ -130,52 +135,113 @@ def estimate_trajectory(ball_positions, frames, detection_frames):
|
|
130 |
impact_point = filtered_positions[impact_idx]
|
131 |
|
132 |
try:
|
133 |
-
# Use
|
134 |
-
fx = interp1d(times[:impact_idx + 1], x_coords[:impact_idx + 1], kind='
|
135 |
-
fy = interp1d(times[:impact_idx + 1], y_coords[:impact_idx + 1], kind='
|
136 |
except Exception as e:
|
137 |
return None, None, None, None, None, None, None, None, None, f"Error in trajectory interpolation: {str(e)}"
|
138 |
|
139 |
# Generate dense points for all frames between first and last detection
|
140 |
total_frames = max(detection_frames) - min(detection_frames) + 1
|
141 |
-
t_full = np.linspace(times[0], times[
|
142 |
x_full = fx(t_full)
|
143 |
y_full = fy(t_full)
|
144 |
trajectory_2d = list(zip(x_full, y_full))
|
145 |
|
146 |
trajectory_3d = [pixel_to_3d(x, y, frame_height, frame_width) for x, y in trajectory_2d]
|
147 |
-
|
148 |
-
|
149 |
-
# Handle missing pitch and impact points gracefully
|
150 |
-
pitch_point_3d = pixel_to_3d(pitch_point[0], pitch_point[1], frame_height, frame_width) if pitch_point else None
|
151 |
-
impact_point_3d = pixel_to_3d(impact_point[0], impact_point[1], frame_height, frame_width) if impact_point else None
|
152 |
-
|
153 |
-
# Handle cases where no pitch/impact point is found
|
154 |
-
if pitch_point is None:
|
155 |
-
pitch_frame = "N/A"
|
156 |
-
pitch_point_3d = None # No 3D coordinates for pitch point
|
157 |
-
if impact_point is None:
|
158 |
-
impact_frame = "N/A"
|
159 |
-
impact_point_3d = None # No 3D coordinates for impact point
|
160 |
|
|
|
161 |
debug_log = (
|
162 |
f"Trajectory estimated successfully\n"
|
163 |
-
f"Pitch point at frame {pitch_frame + 1
|
164 |
-
f"Impact point at frame {impact_frame + 1
|
165 |
-
f"Detections in frames: {filtered_frames}"
|
|
|
166 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
return trajectory_2d, pitch_point, impact_point, pitch_frame, impact_frame, detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, debug_log
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point):
|
170 |
if not frames:
|
171 |
return "Error: No frames processed", None, None, None
|
172 |
if not trajectory or len(ball_positions) < 2:
|
173 |
return "Not enough data (insufficient ball detections)", None, None, None
|
174 |
|
175 |
-
# Check for None values before unpacking
|
176 |
-
if pitch_point is None or impact_point is None:
|
177 |
-
return "Not Out (Unable to determine pitch or impact points)", trajectory, pitch_point, impact_point
|
178 |
-
|
179 |
frame_height, frame_width = frames[0].shape[:2]
|
180 |
stumps_x = frame_width / 2
|
181 |
stumps_y = frame_height * 0.9
|
@@ -200,7 +266,6 @@ def generate_slow_motion(frames, trajectory, pitch_point, impact_point, detectio
|
|
200 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
201 |
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frame_width, frame_height))
|
202 |
|
203 |
-
# Map trajectory points to all frames between first and last detection
|
204 |
if trajectory and detection_frames:
|
205 |
min_frame = min(detection_frames)
|
206 |
max_frame = max(detection_frames)
|
@@ -215,7 +280,6 @@ def generate_slow_motion(frames, trajectory, pitch_point, impact_point, detectio
|
|
215 |
for i, frame in enumerate(frames):
|
216 |
frame_idx = i - min_frame if trajectory_indices else -1
|
217 |
if frame_idx >= 0 and frame_idx < total_frames and trajectory_points.size > 0:
|
218 |
-
# Draw trajectory up to current frame
|
219 |
end_idx = trajectory_indices[frame_idx] + 1
|
220 |
cv2.polylines(frame, [trajectory_points[:end_idx]], False, (255, 0, 0), 2)
|
221 |
if pitch_point and i == pitch_frame:
|
@@ -248,9 +312,17 @@ def drs_review(video):
|
|
248 |
output_path = f"output_{uuid.uuid4()}.mp4"
|
249 |
slow_motion_path = generate_slow_motion(frames, trajectory_2d, pitch_point, impact_point, detection_frames, pitch_frame, impact_frame, output_path)
|
250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
debug_output = f"{debug_log}\n{trajectory_log}"
|
252 |
return (f"DRS Decision: {decision}\nDebug Log:\n{debug_output}",
|
253 |
-
slow_motion_path
|
|
|
|
|
254 |
|
255 |
# Gradio interface
|
256 |
iface = gr.Interface(
|
@@ -259,10 +331,12 @@ iface = gr.Interface(
|
|
259 |
outputs=[
|
260 |
gr.Textbox(label="DRS Decision and Debug Log"),
|
261 |
gr.Video(label="Very Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue Line), Pitch Point (Red), Impact Point (Yellow)"),
|
|
|
|
|
262 |
],
|
263 |
title="AI-Powered DRS for LBW in Local Cricket",
|
264 |
-
description="Upload a video clip of a cricket delivery to get an LBW decision, a slow-motion replay, and 3D visualizations. The replay shows ball detection (green boxes), trajectory (blue line), pitch point (red circle), and impact point (yellow circle)."
|
265 |
)
|
266 |
|
267 |
if __name__ == "__main__":
|
268 |
-
iface.launch()
|
|
|
4 |
from ultralytics import YOLO
|
5 |
import gradio as gr
|
6 |
from scipy.interpolate import interp1d
|
7 |
+
import plotly.graph_objects as go
|
8 |
import uuid
|
9 |
import os
|
10 |
|
|
|
15 |
# Constants for LBW decision and video processing
|
16 |
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
|
17 |
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
|
18 |
+
FRAME_RATE = 20 # Input video frame rate (to be updated dynamically)
|
19 |
SLOW_MOTION_FACTOR = 3 # For very slow motion (3x slower)
|
20 |
+
CONF_THRESHOLD = 0.4 # Increased confidence threshold for better detection
|
21 |
+
IMPACT_ZONE_Y = 0.8 # Adjusted fraction of frame height for impact zone
|
22 |
+
IMPACT_VELOCITY_THRESHOLD = 1000 # Pixels/second for detecting impact
|
23 |
PITCH_LENGTH = 20.12 # meters (standard cricket pitch length)
|
24 |
STUMPS_HEIGHT = 0.71 # meters (stumps height)
|
25 |
CAMERA_HEIGHT = 2.0 # meters (assumed camera height)
|
26 |
CAMERA_DISTANCE = 10.0 # meters (assumed camera distance from pitch)
|
27 |
+
MAX_POSITION_JUMP = 50 # Increased for smoother trajectory
|
28 |
|
29 |
def process_video(video_path):
|
30 |
if not os.path.exists(video_path):
|
31 |
return [], [], [], "Error: Video file not found"
|
32 |
cap = cv2.VideoCapture(video_path)
|
33 |
+
# Get native video resolution and frame rate
|
34 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
35 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
36 |
+
FRAME_RATE = cap.get(cv2.CAP_PROP_FPS) or 20 # Use actual frame rate or default
|
37 |
frames = []
|
38 |
ball_positions = []
|
39 |
detection_frames = []
|
|
|
46 |
break
|
47 |
frame_count += 1
|
48 |
frames.append(frame.copy())
|
49 |
+
# Enhance frame contrast for better detection
|
50 |
+
frame = cv2.convertScaleAbs(frame, alpha=1.2, beta=10)
|
51 |
+
results = model.predict(frame, conf=CONF_THRESHOLD, imgsz=(frame_height, frame_width), iou=0.5, max_det=1)
|
52 |
detections = 0
|
53 |
for detection in results[0].boxes:
|
54 |
if detection.cls == 0: # Class 0 is the ball
|
|
|
60 |
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
61 |
frames[-1] = frame
|
62 |
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
|
63 |
+
# Save debug frame
|
64 |
+
cv2.imwrite(f"debug_frame_{frame_count}.jpg", frame)
|
65 |
cap.release()
|
66 |
|
67 |
if not ball_positions:
|
|
|
69 |
else:
|
70 |
debug_log.append(f"Total ball detections: {len(ball_positions)}")
|
71 |
debug_log.append(f"Video resolution: {frame_width}x{frame_height}")
|
72 |
+
debug_log.append(f"Video frame rate: {FRAME_RATE}")
|
73 |
|
74 |
return frames, ball_positions, detection_frames, "\n".join(debug_log)
|
75 |
|
|
|
98 |
filtered_positions.append(curr_pos)
|
99 |
filtered_frames.append(detection_frames[i])
|
100 |
else:
|
|
|
101 |
continue
|
102 |
|
103 |
if len(filtered_positions) < 2:
|
|
|
107 |
y_coords = [pos[1] for pos in filtered_positions]
|
108 |
times = np.array(filtered_frames) / FRAME_RATE
|
109 |
|
110 |
+
# Convert to 3D for pitch point detection
|
111 |
+
detections_3d = [pixel_to_3d(x, y, frame_height, frame_width) for x, y in filtered_positions]
|
112 |
+
|
113 |
+
# Pitch point: Detection with lowest z-coordinate (closest to ground)
|
114 |
+
pitch_idx = min(range(len(detections_3d)), key=lambda i: detections_3d[i][2])
|
115 |
+
pitch_point = filtered_positions[pitch_idx]
|
116 |
+
pitch_frame = filtered_frames[pitch_idx]
|
|
|
117 |
|
118 |
+
# Impact point: Detect sudden velocity change or impact zone
|
119 |
impact_idx = None
|
120 |
impact_frame = None
|
121 |
+
velocities = [np.sqrt((x_coords[i] - x_coords[i-1])**2 + (y_coords[i] - y_coords[i-1])**2) / (times[i] - times[i-1])
|
122 |
+
for i in range(1, len(x_coords))]
|
123 |
for i in range(1, len(y_coords)):
|
124 |
+
if velocities[i-1] > IMPACT_VELOCITY_THRESHOLD:
|
|
|
125 |
impact_idx = i
|
126 |
impact_frame = filtered_frames[i]
|
127 |
break
|
|
|
135 |
impact_point = filtered_positions[impact_idx]
|
136 |
|
137 |
try:
|
138 |
+
# Use linear interpolation for more stable trajectory
|
139 |
+
fx = interp1d(times[:impact_idx + 1], x_coords[:impact_idx + 1], kind='linear', fill_value="extrapolate")
|
140 |
+
fy = interp1d(times[:impact_idx + 1], y_coords[:impact_idx + 1], kind='linear', fill_value="extrapolate")
|
141 |
except Exception as e:
|
142 |
return None, None, None, None, None, None, None, None, None, f"Error in trajectory interpolation: {str(e)}"
|
143 |
|
144 |
# Generate dense points for all frames between first and last detection
|
145 |
total_frames = max(detection_frames) - min(detection_frames) + 1
|
146 |
+
t_full = np.linspace(times[0], times[impact_idx], total_frames * SLOW_MOTION_FACTOR)
|
147 |
x_full = fx(t_full)
|
148 |
y_full = fy(t_full)
|
149 |
trajectory_2d = list(zip(x_full, y_full))
|
150 |
|
151 |
trajectory_3d = [pixel_to_3d(x, y, frame_height, frame_width) for x, y in trajectory_2d]
|
152 |
+
pitch_point_3d = pixel_to_3d(pitch_point[0], pitch_point[1], frame_height, frame_width)
|
153 |
+
impact_point_3d = pixel_to_3d(impact_point[0], impact_point[1], frame_height, frame_width)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
# Debug trajectory and points
|
156 |
debug_log = (
|
157 |
f"Trajectory estimated successfully\n"
|
158 |
+
f"Pitch point at frame {pitch_frame + 1}: ({pitch_point[0]:.1f}, {pitch_point[1]:.1f}), 3D: {pitch_point_3d}\n"
|
159 |
+
f"Impact point at frame {impact_frame + 1}: ({impact_point[0]:.1f}, {impact_point[1]:.1f}), 3D: {impact_point_3d}\n"
|
160 |
+
f"Detections in frames: {filtered_frames}\n"
|
161 |
+
f"Velocities: {velocities}"
|
162 |
)
|
163 |
+
# Save trajectory plot for debugging
|
164 |
+
import matplotlib.pyplot as plt
|
165 |
+
plt.plot(x_coords, y_coords, 'bo-', label='Filtered Detections')
|
166 |
+
plt.plot(pitch_point[0], pitch_point[1], 'ro', label='Pitch Point')
|
167 |
+
plt.plot(impact_point[0], impact_point[1], 'yo', label='Impact Point')
|
168 |
+
plt.legend()
|
169 |
+
plt.savefig("trajectory_debug.png")
|
170 |
+
|
171 |
return trajectory_2d, pitch_point, impact_point, pitch_frame, impact_frame, detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, debug_log
|
172 |
|
173 |
+
def create_3d_plot(detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, plot_type="detections"):
|
174 |
+
"""Create 3D Plotly visualization for detections or trajectory using single-detection frames."""
|
175 |
+
stump_x = [-STUMPS_WIDTH/2, STUMPS_WIDTH/2, 0]
|
176 |
+
stump_y = [PITCH_LENGTH, PITCH_LENGTH, PITCH_LENGTH]
|
177 |
+
stump_z = [0, 0, 0]
|
178 |
+
stump_top_z = [STUMPS_HEIGHT, STUMPS_HEIGHT, STUMPS_HEIGHT]
|
179 |
+
bail_x = [-STUMPS_WIDTH/2, STUMPS_WIDTH/2]
|
180 |
+
bail_y = [PITCH_LENGTH, PITCH_LENGTH]
|
181 |
+
bail_z = [STUMPS_HEIGHT, STUMPS_HEIGHT]
|
182 |
+
|
183 |
+
stump_traces = []
|
184 |
+
for i in range(3):
|
185 |
+
stump_traces.append(go.Scatter3d(
|
186 |
+
x=[stump_x[i], stump_x[i]], y=[stump_y[i], stump_y[i]], z=[stump_z[i], stump_top_z[i]],
|
187 |
+
mode='lines', line=dict(color='black', width=5), name=f'Stump {i+1}'
|
188 |
+
))
|
189 |
+
bail_traces = [
|
190 |
+
go.Scatter3d(
|
191 |
+
x=bail_x, y=bail_y, z=bail_z,
|
192 |
+
mode='lines', line=dict(color='black', width=5), name='Bail'
|
193 |
+
)
|
194 |
+
]
|
195 |
+
|
196 |
+
pitch_scatter = go.Scatter3d(
|
197 |
+
x=[pitch_point_3d[0]] ifpitch_point_3d else [],
|
198 |
+
y=[pitch_point_3d[1]] if pitch_point_3d else [],
|
199 |
+
z=[pitch_point_3d[2]] if pitch_point_3d else [],
|
200 |
+
mode='markers', marker=dict(size=8, color='red'), name='Pitch Point'
|
201 |
+
)
|
202 |
+
impact_scatter = go.Scatter3d(
|
203 |
+
x=[impact_point_3d[0]] if impact_point_3d else [],
|
204 |
+
y=[impact_point_3d[1]] if impact_point_3d else [],
|
205 |
+
z=[impact_point_3d[2]] if impact_point_3d else [],
|
206 |
+
mode='markers', marker=dict(size=8, color='yellow'), name='Impact Point'
|
207 |
+
)
|
208 |
+
|
209 |
+
if plot_type == "detections":
|
210 |
+
x, y, z = zip(*detections_3d) if detections_3d else ([], [], [])
|
211 |
+
scatter = go.Scatter3d(
|
212 |
+
x=x, y=y, z=z, mode='markers',
|
213 |
+
marker=dict(size=5, color='green'), name='Single Ball Detections'
|
214 |
+
)
|
215 |
+
data = [scatter, pitch_scatter, impact_scatter] + stump_traces + bail_traces
|
216 |
+
title = "3D Single Ball Detections"
|
217 |
+
else:
|
218 |
+
x, y, z = zip(*trajectory_3d) if trajectory_3d else ([], [], [])
|
219 |
+
trajectory_line = go.Scatter3d(
|
220 |
+
x=x, y=y, z=z, mode='lines',
|
221 |
+
line=dict(color='blue', width=4), name='Ball Trajectory (Single Detections)'
|
222 |
+
)
|
223 |
+
data = [trajectory_line, pitch_scatter, impact_scatter] + stump_traces + bail_traces
|
224 |
+
title = "3D Ball Trajectory (Single Detections)"
|
225 |
+
|
226 |
+
layout = go.Layout(
|
227 |
+
title=title,
|
228 |
+
scene=dict(
|
229 |
+
xaxis_title='X (meters)', yaxis_title='Y (meters)', zaxis_title='Z (meters)',
|
230 |
+
xaxis=dict(range=[-1.5, 1.5]), yaxis=dict(range=[0, PITCH_LENGTH]),
|
231 |
+
zaxis=dict(range=[0, STUMPS_HEIGHT * 2]), aspectmode='manual',
|
232 |
+
aspectratio=dict(x=1, y=4, z=0.5)
|
233 |
+
),
|
234 |
+
showlegend=True
|
235 |
+
)
|
236 |
+
fig = go.Figure(data=data, layout=layout)
|
237 |
+
return fig
|
238 |
+
|
239 |
def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point):
|
240 |
if not frames:
|
241 |
return "Error: No frames processed", None, None, None
|
242 |
if not trajectory or len(ball_positions) < 2:
|
243 |
return "Not enough data (insufficient ball detections)", None, None, None
|
244 |
|
|
|
|
|
|
|
|
|
245 |
frame_height, frame_width = frames[0].shape[:2]
|
246 |
stumps_x = frame_width / 2
|
247 |
stumps_y = frame_height * 0.9
|
|
|
266 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
267 |
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frame_width, frame_height))
|
268 |
|
|
|
269 |
if trajectory and detection_frames:
|
270 |
min_frame = min(detection_frames)
|
271 |
max_frame = max(detection_frames)
|
|
|
280 |
for i, frame in enumerate(frames):
|
281 |
frame_idx = i - min_frame if trajectory_indices else -1
|
282 |
if frame_idx >= 0 and frame_idx < total_frames and trajectory_points.size > 0:
|
|
|
283 |
end_idx = trajectory_indices[frame_idx] + 1
|
284 |
cv2.polylines(frame, [trajectory_points[:end_idx]], False, (255, 0, 0), 2)
|
285 |
if pitch_point and i == pitch_frame:
|
|
|
312 |
output_path = f"output_{uuid.uuid4()}.mp4"
|
313 |
slow_motion_path = generate_slow_motion(frames, trajectory_2d, pitch_point, impact_point, detection_frames, pitch_frame, impact_frame, output_path)
|
314 |
|
315 |
+
detections_fig = None
|
316 |
+
trajectory_fig = None
|
317 |
+
if detections_3d:
|
318 |
+
detections_fig = create_3d_plot(detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, "detections")
|
319 |
+
trajectory_fig = create_3d_plot(detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, "trajectory")
|
320 |
+
|
321 |
debug_output = f"{debug_log}\n{trajectory_log}"
|
322 |
return (f"DRS Decision: {decision}\nDebug Log:\n{debug_output}",
|
323 |
+
slow_motion_path,
|
324 |
+
detections_fig,
|
325 |
+
trajectory_fig)
|
326 |
|
327 |
# Gradio interface
|
328 |
iface = gr.Interface(
|
|
|
331 |
outputs=[
|
332 |
gr.Textbox(label="DRS Decision and Debug Log"),
|
333 |
gr.Video(label="Very Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue Line), Pitch Point (Red), Impact Point (Yellow)"),
|
334 |
+
gr.Plot(label="3D Single Ball Detections Plot"),
|
335 |
+
gr.Plot(label="3D Ball Trajectory Plot (Single Detections)")
|
336 |
],
|
337 |
title="AI-Powered DRS for LBW in Local Cricket",
|
338 |
+
description="Upload a video clip of a cricket delivery to get an LBW decision, a slow-motion replay, and 3D visualizations. The replay shows ball detection (green boxes), trajectory (blue line), pitch point (red circle), and impact point (yellow circle). The 3D plots show single-detection frames (green markers) and trajectory (blue line) with wicket lines (black), pitch point (red), and impact point (yellow)."
|
339 |
)
|
340 |
|
341 |
if __name__ == "__main__":
|
342 |
+
iface.launch()
|