Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,341 +1,159 @@
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
| 3 |
-
import torch
|
| 4 |
from ultralytics import YOLO
|
| 5 |
-
import
|
| 6 |
from scipy.interpolate import interp1d
|
| 7 |
-
import
|
| 8 |
-
import uuid
|
| 9 |
import os
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# Constants for LBW decision and video processing
|
| 16 |
-
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
|
| 17 |
-
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
|
| 18 |
-
FRAME_RATE = 20 # Input video frame rate
|
| 19 |
-
SLOW_MOTION_FACTOR = 3 # For very slow motion (3x slower)
|
| 20 |
-
CONF_THRESHOLD = 0.2 # Confidence threshold
|
| 21 |
-
IMPACT_ZONE_Y = 0.85 # Fraction of frame height where impact is likely
|
| 22 |
-
IMPACT_DELTA_Y = 50 # Pixels for detecting sudden y-position change
|
| 23 |
-
PITCH_LENGTH = 20.12 # meters (standard cricket pitch length)
|
| 24 |
-
STUMPS_HEIGHT = 0.71 # meters (stumps height)
|
| 25 |
-
CAMERA_HEIGHT = 2.0 # meters (assumed camera height)
|
| 26 |
-
CAMERA_DISTANCE = 10.0 # meters (assumed camera distance from pitch)
|
| 27 |
-
MAX_POSITION_JUMP = 30 # Pixels, tightened for continuous trajectory
|
| 28 |
|
| 29 |
def process_video(video_path):
|
| 30 |
-
|
| 31 |
-
return [], [], [], "Error: Video file not found"
|
| 32 |
cap = cv2.VideoCapture(video_path)
|
| 33 |
-
# Get native video resolution
|
| 34 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 35 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
frames = []
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
debug_log = []
|
| 40 |
|
| 41 |
-
frame_count = 0
|
| 42 |
while cap.isOpened():
|
| 43 |
ret, frame = cap.read()
|
| 44 |
if not ret:
|
| 45 |
break
|
| 46 |
-
frame_count += 1
|
| 47 |
frames.append(frame.copy())
|
| 48 |
-
# Use native resolution for inference
|
| 49 |
-
results = model.predict(frame, conf=CONF_THRESHOLD, imgsz=(frame_height, frame_width), iou=0.5, max_det=1)
|
| 50 |
-
detections = 0
|
| 51 |
-
for detection in results[0].boxes:
|
| 52 |
-
if detection.cls == 0: # Class 0 is the ball
|
| 53 |
-
detections += 1
|
| 54 |
-
if detections == 1: # Only consider frames with exactly one detection
|
| 55 |
-
x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
|
| 56 |
-
ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
|
| 57 |
-
detection_frames.append(frame_count - 1)
|
| 58 |
-
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
| 59 |
-
frames[-1] = frame
|
| 60 |
-
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
|
| 61 |
-
cap.release()
|
| 62 |
-
|
| 63 |
-
if not ball_positions:
|
| 64 |
-
debug_log.append("No balls detected in any frame")
|
| 65 |
-
else:
|
| 66 |
-
debug_log.append(f"Total ball detections: {len(ball_positions)}")
|
| 67 |
-
debug_log.append(f"Video resolution: {frame_width}x{frame_height}")
|
| 68 |
-
|
| 69 |
-
return frames, ball_positions, detection_frames, "\n".join(debug_log)
|
| 70 |
-
|
| 71 |
-
def pixel_to_3d(x, y, frame_height, frame_width):
|
| 72 |
-
"""Convert 2D pixel coordinates to 3D real-world coordinates."""
|
| 73 |
-
x_norm = x / frame_width
|
| 74 |
-
y_norm = y / frame_height
|
| 75 |
-
x_3d = (x_norm - 0.5) * 3.0 # Center x at 0 (middle of pitch)
|
| 76 |
-
y_3d = y_norm * PITCH_LENGTH
|
| 77 |
-
z_3d = (1 - y_norm) * BALL_DIAMETER * 5 # Scale to approximate ball bounce height
|
| 78 |
-
return x_3d, y_3d, z_3d
|
| 79 |
-
|
| 80 |
-
def estimate_trajectory(ball_positions, frames, detection_frames):
|
| 81 |
-
if len(ball_positions) < 2:
|
| 82 |
-
return None, None, None, None, None, None, None, None, None, "Error: Fewer than 2 ball detections for trajectory"
|
| 83 |
-
frame_height, frame_width = frames[0].shape[:2]
|
| 84 |
-
|
| 85 |
-
# Filter out sudden changes in position for continuous trajectory
|
| 86 |
-
filtered_positions = [ball_positions[0]]
|
| 87 |
-
filtered_frames = [detection_frames[0]]
|
| 88 |
-
for i in range(1, len(ball_positions)):
|
| 89 |
-
prev_pos = filtered_positions[-1]
|
| 90 |
-
curr_pos = ball_positions[i]
|
| 91 |
-
distance = np.sqrt((curr_pos[0] - prev_pos[0])**2 + (curr_pos[1] - prev_pos[1])**2)
|
| 92 |
-
if distance <= MAX_POSITION_JUMP:
|
| 93 |
-
filtered_positions.append(curr_pos)
|
| 94 |
-
filtered_frames.append(detection_frames[i])
|
| 95 |
-
else:
|
| 96 |
-
# Skip sudden jumps to maintain continuity
|
| 97 |
-
continue
|
| 98 |
-
|
| 99 |
-
if len(filtered_positions) < 2:
|
| 100 |
-
return None, None, None, None, None, None, None, None, None, "Error: Fewer than 2 valid ball detections after filtering"
|
| 101 |
-
|
| 102 |
-
x_coords = [pos[0] for pos in filtered_positions]
|
| 103 |
-
y_coords = [pos[1] for pos in filtered_positions]
|
| 104 |
-
times = np.array(filtered_frames) / FRAME_RATE
|
| 105 |
-
|
| 106 |
-
# Pitch point detection: Assume it happens when the ball reaches a certain low point on the y-axis
|
| 107 |
-
pitch_point = None
|
| 108 |
-
pitch_frame = None
|
| 109 |
-
for i in range(1, len(y_coords)):
|
| 110 |
-
if y_coords[i] > frame_height * 0.75: # The ball reaches near the ground
|
| 111 |
-
pitch_point = filtered_positions[i]
|
| 112 |
-
pitch_frame = filtered_frames[i]
|
| 113 |
-
break
|
| 114 |
-
|
| 115 |
-
# Impact point detection: Look for sudden changes in the y-position (delta_y) or when ball enters impact zone
|
| 116 |
-
impact_idx = None
|
| 117 |
-
impact_frame = None
|
| 118 |
-
for i in range(1, len(y_coords)):
|
| 119 |
-
delta_y = abs(y_coords[i] - y_coords[i-1])
|
| 120 |
-
if delta_y > IMPACT_DELTA_Y:
|
| 121 |
-
impact_idx = i
|
| 122 |
-
impact_frame = filtered_frames[i]
|
| 123 |
-
break
|
| 124 |
-
elif y_coords[i] > frame_height * IMPACT_ZONE_Y:
|
| 125 |
-
impact_idx = i
|
| 126 |
-
impact_frame = filtered_frames[i]
|
| 127 |
-
break
|
| 128 |
-
if impact_idx is None:
|
| 129 |
-
impact_idx = len(filtered_positions) - 1
|
| 130 |
-
impact_frame = filtered_frames[-1]
|
| 131 |
-
impact_point = filtered_positions[impact_idx]
|
| 132 |
-
|
| 133 |
-
try:
|
| 134 |
-
# Use cubic interpolation for smoother trajectory
|
| 135 |
-
fx = interp1d(times[:impact_idx + 1], x_coords[:impact_idx + 1], kind='cubic', fill_value="extrapolate")
|
| 136 |
-
fy = interp1d(times[:impact_idx + 1], y_coords[:impact_idx + 1], kind='cubic', fill_value="extrapolate")
|
| 137 |
-
except Exception as e:
|
| 138 |
-
return None, None, None, None, None, None, None, None, None, f"Error in trajectory interpolation: {str(e)}"
|
| 139 |
-
|
| 140 |
-
# Generate dense points for all frames between first and last detection
|
| 141 |
-
total_frames = max(detection_frames) - min(detection_frames) + 1
|
| 142 |
-
t_full = np.linspace(times[0], times[-1], total_frames * SLOW_MOTION_FACTOR)
|
| 143 |
-
x_full = fx(t_full)
|
| 144 |
-
y_full = fy(t_full)
|
| 145 |
-
trajectory_2d = list(zip(x_full, y_full))
|
| 146 |
-
|
| 147 |
-
trajectory_3d = [pixel_to_3d(x, y, frame_height, frame_width) for x, y in trajectory_2d]
|
| 148 |
-
detections_3d = [pixel_to_3d(x, y, frame_height, frame_width) for x, y in filtered_positions]
|
| 149 |
-
|
| 150 |
-
# Handle missing pitch and impact points gracefully
|
| 151 |
-
pitch_point_3d = pixel_to_3d(pitch_point[0], pitch_point[1], frame_height, frame_width) if pitch_point else None
|
| 152 |
-
impact_point_3d = pixel_to_3d(impact_point[0], impact_point[1], frame_height, frame_width) if impact_point else None
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
-
|
| 163 |
-
f"Trajectory estimated successfully\n"
|
| 164 |
-
f"Pitch point at frame {pitch_frame + 1 if pitch_frame != 'N/A' else 'N/A'}: {pitch_point if pitch_point else 'Not detected'}\n"
|
| 165 |
-
f"Impact point at frame {impact_frame + 1 if impact_frame != 'N/A' else 'N/A'}: {impact_point if impact_point else 'Not detected'}\n"
|
| 166 |
-
f"Detections in frames: {filtered_frames}"
|
| 167 |
-
)
|
| 168 |
-
return trajectory_2d, pitch_point, impact_point, pitch_frame, impact_frame, detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, debug_log
|
| 169 |
-
|
| 170 |
-
def create_3d_plot(detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, plot_type="detections"):
|
| 171 |
-
"""Create 3D Plotly visualization for detections or trajectory using single-detection frames."""
|
| 172 |
-
stump_x = [-STUMPS_WIDTH/2, STUMPS_WIDTH/2, 0]
|
| 173 |
-
stump_y = [PITCH_LENGTH, PITCH_LENGTH, PITCH_LENGTH]
|
| 174 |
-
stump_z = [0, 0, 0]
|
| 175 |
-
stump_top_z = [STUMPS_HEIGHT, STUMPS_HEIGHT, STUMPS_HEIGHT]
|
| 176 |
-
bail_x = [-STUMPS_WIDTH/2, STUMPS_WIDTH/2]
|
| 177 |
-
bail_y = [PITCH_LENGTH, PITCH_LENGTH]
|
| 178 |
-
bail_z = [STUMPS_HEIGHT, STUMPS_HEIGHT]
|
| 179 |
-
|
| 180 |
-
stump_traces = []
|
| 181 |
-
for i in range(3):
|
| 182 |
-
stump_traces.append(go.Scatter3d(
|
| 183 |
-
x=[stump_x[i], stump_x[i]], y=[stump_y[i], stump_y[i]], z=[stump_z[i], stump_top_z[i]],
|
| 184 |
-
mode='lines', line=dict(color='black', width=5), name=f'Stump {i+1}'
|
| 185 |
-
))
|
| 186 |
-
bail_traces = [
|
| 187 |
-
go.Scatter3d(
|
| 188 |
-
x=bail_x, y=bail_y, z=bail_z,
|
| 189 |
-
mode='lines', line=dict(color='black', width=5), name='Bail'
|
| 190 |
-
)
|
| 191 |
-
]
|
| 192 |
-
|
| 193 |
-
pitch_scatter = go.Scatter3d(
|
| 194 |
-
x=[pitch_point_3d[0]] if pitch_point_3d else [],
|
| 195 |
-
y=[pitch_point_3d[1]] if pitch_point_3d else [],
|
| 196 |
-
z=[pitch_point_3d[2]] if pitch_point_3d else [],
|
| 197 |
-
mode='markers', marker=dict(size=8, color='red'), name='Pitch Point'
|
| 198 |
-
)
|
| 199 |
-
impact_scatter = go.Scatter3d(
|
| 200 |
-
x=[impact_point_3d[0]] if impact_point_3d else [],
|
| 201 |
-
y=[impact_point_3d[1]] if impact_point_3d else [],
|
| 202 |
-
z=[impact_point_3d[2]] if impact_point_3d else [],
|
| 203 |
-
mode='markers', marker=dict(size=8, color='yellow'), name='Impact Point'
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
if plot_type == "detections":
|
| 207 |
-
x, y, z = zip(*detections_3d) if detections_3d else ([], [], [])
|
| 208 |
-
scatter = go.Scatter3d(
|
| 209 |
-
x=x, y=y, z=z, mode='markers',
|
| 210 |
-
marker=dict(size=5, color='green'), name='Single Ball Detections'
|
| 211 |
-
)
|
| 212 |
-
data = [scatter, pitch_scatter, impact_scatter] + stump_traces + bail_traces
|
| 213 |
-
title = "3D Single Ball Detections"
|
| 214 |
-
else:
|
| 215 |
-
x, y, z = zip(*trajectory_3d) if trajectory_3d else ([], [], [])
|
| 216 |
-
trajectory_line = go.Scatter3d(
|
| 217 |
-
x=x, y=y, z=z, mode='lines',
|
| 218 |
-
line=dict(color='blue', width=4), name='Ball Trajectory (Single Detections)'
|
| 219 |
-
)
|
| 220 |
-
data = [trajectory_line, pitch_scatter, impact_scatter] + stump_traces + bail_traces
|
| 221 |
-
title = "3D Ball Trajectory (Single Detections)"
|
| 222 |
-
|
| 223 |
-
layout = go.Layout(
|
| 224 |
-
title=title,
|
| 225 |
-
scene=dict(
|
| 226 |
-
xaxis_title='X (meters)', yaxis_title='Y (meters)', zaxis_title='Z (meters)',
|
| 227 |
-
xaxis=dict(range=[-1.5, 1.5]), yaxis=dict(range=[0, PITCH_LENGTH]),
|
| 228 |
-
zaxis=dict(range=[0, STUMPS_HEIGHT * 2]), aspectmode='manual',
|
| 229 |
-
aspectratio=dict(x=1, y=4, z=0.5)
|
| 230 |
-
),
|
| 231 |
-
showlegend=True
|
| 232 |
-
)
|
| 233 |
-
fig = go.Figure(data=data, layout=layout)
|
| 234 |
-
return fig
|
| 235 |
-
|
| 236 |
-
def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point):
|
| 237 |
-
if not frames:
|
| 238 |
-
return "Error: No frames processed", None, None, None
|
| 239 |
-
if not trajectory or len(ball_positions) < 2:
|
| 240 |
-
return "Not enough data (insufficient ball detections)", None, None, None
|
| 241 |
-
|
| 242 |
-
frame_height, frame_width = frames[0].shape[:2]
|
| 243 |
-
stumps_x = frame_width / 2
|
| 244 |
-
stumps_y = frame_height * 0.9
|
| 245 |
-
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
|
| 246 |
-
|
| 247 |
-
pitch_x, pitch_y = pitch_point
|
| 248 |
-
impact_x, impact_y = impact_point
|
| 249 |
-
|
| 250 |
-
if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
|
| 251 |
-
return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", trajectory, pitch_point, impact_point
|
| 252 |
-
if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
|
| 253 |
-
return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
|
| 254 |
-
for x, y in trajectory:
|
| 255 |
-
if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
|
| 256 |
-
return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
|
| 257 |
-
return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
|
| 258 |
-
|
| 259 |
-
def generate_slow_motion(frames, trajectory, pitch_point, impact_point, detection_frames, pitch_frame, impact_frame, output_path):
|
| 260 |
-
if not frames:
|
| 261 |
-
return None
|
| 262 |
-
frame_height, frame_width = frames[0].shape[:2]
|
| 263 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 264 |
-
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frame_width, frame_height))
|
| 265 |
|
| 266 |
-
#
|
| 267 |
-
if
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
|
|
|
| 274 |
else:
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
for i, frame in enumerate(frames):
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
cv2.
|
| 288 |
-
|
| 289 |
-
if
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
return output_path
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
frames, ball_positions, detection_frames, debug_log = process_video(video)
|
| 301 |
-
if not frames:
|
| 302 |
-
return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None, None, None
|
| 303 |
-
|
| 304 |
-
trajectory_2d, pitch_point, impact_point, pitch_frame, impact_frame, detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, trajectory_log = estimate_trajectory(ball_positions, frames, detection_frames)
|
| 305 |
-
|
| 306 |
-
if trajectory_2d is None:
|
| 307 |
-
return (f"Error: {trajectory_log}\nDebug Log:\n{debug_log}", None, None, None)
|
| 308 |
-
|
| 309 |
-
decision, trajectory_2d, pitch_point, impact_point = lbw_decision(ball_positions, trajectory_2d, frames, pitch_point, impact_point)
|
| 310 |
-
|
| 311 |
-
output_path = f"output_{uuid.uuid4()}.mp4"
|
| 312 |
-
slow_motion_path = generate_slow_motion(frames, trajectory_2d, pitch_point, impact_point, detection_frames, pitch_frame, impact_frame, output_path)
|
| 313 |
-
|
| 314 |
-
detections_fig = None
|
| 315 |
-
trajectory_fig = None
|
| 316 |
-
if detections_3d:
|
| 317 |
-
detections_fig = create_3d_plot(detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, "detections")
|
| 318 |
-
trajectory_fig = create_3d_plot(detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, "trajectory")
|
| 319 |
-
|
| 320 |
-
debug_output = f"{debug_log}\n{trajectory_log}"
|
| 321 |
-
return (f"DRS Decision: {decision}\nDebug Log:\n{debug_output}",
|
| 322 |
-
slow_motion_path,
|
| 323 |
-
detections_fig,
|
| 324 |
-
trajectory_fig)
|
| 325 |
-
|
| 326 |
-
# Gradio interface
|
| 327 |
iface = gr.Interface(
|
| 328 |
-
fn=
|
| 329 |
-
inputs=gr.Video(label="Upload Video
|
| 330 |
-
outputs=[
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
gr.Plot(label="3D Single Ball Detections Plot"),
|
| 334 |
-
gr.Plot(label="3D Ball Trajectory Plot (Single Detections)")
|
| 335 |
-
],
|
| 336 |
-
title="AI-Powered DRS for LBW in Local Cricket",
|
| 337 |
-
description="Upload a video clip of a cricket delivery to get an LBW decision, a slow-motion replay, and 3D visualizations. The replay shows ball detection (green boxes), trajectory (blue line), pitch point (red circle), and impact point (yellow circle). The 3D plots show single-detection frames (green markers) and trajectory (blue line) with wicket lines (black), pitch point (red), and impact point (yellow)."
|
| 338 |
)
|
| 339 |
|
| 340 |
if __name__ == "__main__":
|
| 341 |
-
iface.launch()
|
|
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
|
|
|
| 3 |
from ultralytics import YOLO
|
| 4 |
+
import mediapipe as mp
|
| 5 |
from scipy.interpolate import interp1d
|
| 6 |
+
import gradio as gr
|
|
|
|
| 7 |
import os
|
| 8 |
|
| 9 |
+
# Initialize models
|
| 10 |
+
ball_model = YOLO('best.pt') # Load pre-trained YOLOv8 model
|
| 11 |
+
mp_pose = mp.solutions.pose
|
| 12 |
+
pose = mp_pose.Pose()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def process_video(video_path):
|
| 15 |
+
# Load video
|
|
|
|
| 16 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
| 17 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 18 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 19 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 20 |
+
output_path = "replay.mp4"
|
| 21 |
+
output_video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height))
|
| 22 |
+
|
| 23 |
+
ball_positions = [] # Store (frame_idx, x, y, confidence)
|
| 24 |
+
release_frame, pitch_frame, impact_frame = None, None, None
|
| 25 |
+
release_x, release_y = None, None
|
| 26 |
+
pitch_x, pitch_y = None, None
|
| 27 |
+
impact_x, impact_y = None, None
|
| 28 |
+
decision = "Not Out"
|
| 29 |
+
|
| 30 |
+
# Initialize Kalman Filter (tuned for smooth cricket ball motion)
|
| 31 |
+
kalman = cv2.KalmanFilter(4, 2)
|
| 32 |
+
kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
|
| 33 |
+
kalman.transitionMatrix = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
|
| 34 |
+
kalman.processNoiseCov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) * 0.01 # Reduced noise for smoother tracking
|
| 35 |
+
kalman.measurementNoiseCov = np.array([[1, 0], [0, 1]], np.float32) * 0.1 # Trust measurements less to avoid jumps
|
| 36 |
+
kalman.statePre = np.array([[frame_width/2], [frame_height/2], [0], [0]], np.float32) # Initialize at frame center
|
| 37 |
+
|
| 38 |
frames = []
|
| 39 |
+
frame_idx = 0
|
| 40 |
+
last_valid_pos = None
|
|
|
|
| 41 |
|
|
|
|
| 42 |
while cap.isOpened():
|
| 43 |
ret, frame = cap.read()
|
| 44 |
if not ret:
|
| 45 |
break
|
|
|
|
| 46 |
frames.append(frame.copy())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# Ball detection with confidence threshold
|
| 49 |
+
results = ball_model.predict(frame, verbose=False)
|
| 50 |
+
ball_detected = False
|
| 51 |
+
for result in results:
|
| 52 |
+
for box in result.boxes:
|
| 53 |
+
if result.names[int(box.cls)] == 'cricket_ball' and box.conf > 0.7: # Confidence threshold
|
| 54 |
+
x, y, w, h = box.xywh[0]
|
| 55 |
+
# Avoid drastic jumps: check if position is physically plausible
|
| 56 |
+
if last_valid_pos is None or (
|
| 57 |
+
abs(x - last_valid_pos[0]) < 100 and abs(y - last_valid_pos[1]) < 100 # Limit max jump (pixels)
|
| 58 |
+
):
|
| 59 |
+
measurement = np.array([[np.float32(x)], [np.float32(y)]])
|
| 60 |
+
kalman.correct(measurement)
|
| 61 |
+
ball_positions.append((frame_idx, x, y, box.conf))
|
| 62 |
+
last_valid_pos = (x, y)
|
| 63 |
+
ball_detected = True
|
| 64 |
+
break
|
| 65 |
+
|
| 66 |
+
if not ball_detected:
|
| 67 |
+
# Predict position for missing frames
|
| 68 |
+
prediction = kalman.predict()
|
| 69 |
+
x, y = prediction[0], prediction[1]
|
| 70 |
+
if 0 <= x < frame_width and 0 <= y < frame_height: # Ensure prediction is within frame
|
| 71 |
+
ball_positions.append((frame_idx, x, y, 0.0)) # Zero confidence for predictions
|
| 72 |
+
|
| 73 |
+
# Pose detection for release and impact
|
| 74 |
+
pose_results = pose.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 75 |
+
if pose_results.pose_landmarks:
|
| 76 |
+
# Release point (early frames, bowler's hand)
|
| 77 |
+
if frame_idx < 10 and release_frame is None:
|
| 78 |
+
hand = pose_results.pose_landmarks.landmark[mp_pose.PoseLandmark.RIGHT_HAND]
|
| 79 |
+
if hand.visibility > 0.7:
|
| 80 |
+
release_x, release_y = hand.x * frame_width, hand.y * frame_height
|
| 81 |
+
release_frame = frame_idx
|
| 82 |
+
|
| 83 |
+
# Impact point (batsman’s pad/bat)
|
| 84 |
+
if ball_detected and impact_frame is None:
|
| 85 |
+
for landmark in [mp_pose.PoseLandmark.LEFT_KNEE, mp_pose.PoseLandmark.RIGHT_KNEE]:
|
| 86 |
+
knee = pose_results.pose_landmarks.landmark[landmark]
|
| 87 |
+
if knee.visibility > 0.7:
|
| 88 |
+
knee_x, knee_y = knee.x * frame_width, knee.y * frame_height
|
| 89 |
+
if abs(knee_x - x) < 50 and abs(knee_y - y) < 50: # Simplified collision check
|
| 90 |
+
impact_x, impact_y = x, y
|
| 91 |
+
impact_frame = frame_idx
|
| 92 |
+
break
|
| 93 |
+
|
| 94 |
+
# Pitch point (lowest y-coordinate among confident detections)
|
| 95 |
+
if ball_detected and pitch_frame is None:
|
| 96 |
+
if y > frame_height * 0.8: # Assume pitch is in lower 20% of frame
|
| 97 |
+
pitch_x, pitch_y = x, y
|
| 98 |
+
pitch_frame = frame_idx
|
| 99 |
+
|
| 100 |
+
frame_idx += 1
|
| 101 |
|
| 102 |
+
cap.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
# Filter confident detections for trajectory
|
| 105 |
+
confident_positions = [(idx, x, y) for idx, x, y, conf in ball_positions if conf > 0.7]
|
| 106 |
+
if len(confident_positions) > 2: # Need at least 3 points for cubic interpolation
|
| 107 |
+
frames_range, x_coords, y_coords = zip(*confident_positions)
|
| 108 |
+
# Smooth trajectory with cubic spline
|
| 109 |
+
fx = interp1d(frames_range, x_coords, kind='cubic', fill_value="extrapolate")
|
| 110 |
+
fy = interp1d(frames_range, y_coords, kind='cubic', fill_value="extrapolate")
|
| 111 |
+
all_frames = np.arange(min(frames_range), max(frames_range) + 1)
|
| 112 |
+
smooth_trajectory = [(int(fx(t)), int(fy(t))) for t in all_frames if 0 <= fx(t) < frame_width and 0 <= fy(t) < frame_height]
|
| 113 |
else:
|
| 114 |
+
smooth_trajectory = [(x, y) for idx, x, y, conf in ball_positions if 0 <= x < frame_width and 0 <= y < frame_height]
|
| 115 |
+
|
| 116 |
+
# LBW Decision (simplified)
|
| 117 |
+
pitch_in_line = pitch_x is not None and frame_width * 0.4 < pitch_x < frame_width * 0.6
|
| 118 |
+
impact_in_line = impact_x is not None and frame_width * 0.4 < impact_x < frame_width * 0.6
|
| 119 |
+
stumps_hit = False
|
| 120 |
+
if impact_frame and smooth_trajectory:
|
| 121 |
+
last_x, last_y = smooth_trajectory[-1]
|
| 122 |
+
if last_y < frame_height * 0.3 and frame_width * 0.4 < last_x < frame_width * 0.6:
|
| 123 |
+
stumps_hit = True
|
| 124 |
+
if pitch_in_line and impact_in_line and stumps_hit:
|
| 125 |
+
decision = "Out"
|
| 126 |
+
|
| 127 |
+
# Generate replay video
|
| 128 |
for i, frame in enumerate(frames):
|
| 129 |
+
# Draw trajectory (red)
|
| 130 |
+
for x, y in smooth_trajectory:
|
| 131 |
+
cv2.circle(frame, (x, y), 3, (0, 0, 255), -1)
|
| 132 |
+
# Draw release point (blue)
|
| 133 |
+
if i == release_frame and release_x and release_y:
|
| 134 |
+
cv2.circle(frame, (int(release_x), int(release_y)), 5, (255, 0, 0), -1)
|
| 135 |
+
# Draw pitch point (yellow)
|
| 136 |
+
if i == pitch_frame and pitch_x and pitch_y:
|
| 137 |
+
cv2.circle(frame, (int(pitch_x), int(pitch_y)), 5, (0, 255, 255), -1)
|
| 138 |
+
# Draw impact point (green)
|
| 139 |
+
if i == impact_frame and impact_x and impact_y:
|
| 140 |
+
cv2.circle(frame, (int(impact_x), int(impact_y)), 5, (0, 255, 0), -1)
|
| 141 |
+
# Add decision text
|
| 142 |
+
cv2.putText(frame, f"Decision: {decision}", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
| 143 |
+
output_video.write(frame)
|
| 144 |
+
|
| 145 |
+
output_video.release()
|
| 146 |
+
|
| 147 |
+
return output_path, decision
|
| 148 |
+
|
| 149 |
+
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
iface = gr.Interface(
|
| 151 |
+
fn=process_video,
|
| 152 |
+
inputs=gr.Video(label="Upload Cricket Video (5-10s, 1080p, behind bowler/side-on)"),
|
| 153 |
+
outputs=[gr.Video(label="Replay Video"), gr.Textbox(label="Decision")],
|
| 154 |
+
title="Cricket DRS System",
|
| 155 |
+
description="Upload a cricket video to get a DRS analysis with smooth ball trajectory and Out/Not Out decision."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
)
|
| 157 |
|
| 158 |
if __name__ == "__main__":
|
| 159 |
+
iface.launch()
|