AjaykumarPilla commited on
Commit
a568f96
·
verified ·
1 Parent(s): 6eec350

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -22
app.py CHANGED
@@ -18,13 +18,13 @@ STUMPS_WIDTH = 0.2286 # meters (width of stumps)
18
  BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
19
  FRAME_RATE = 20 # Default frame rate, updated dynamically
20
  SLOW_MOTION_FACTOR = 1.5 # Faster replay (e.g., 30 / 1.5 = 20 FPS)
21
- CONF_THRESHOLD = 0.2 # Lowered for better detection
22
  IMPACT_ZONE_Y = 0.9 # Adjusted to 90% of frame height for impact zone
23
  PITCH_LENGTH = 20.12 # meters (standard cricket pitch length)
24
  STUMPS_HEIGHT = 0.71 # meters (stumps height)
25
  CAMERA_HEIGHT = 2.0 # meters (assumed camera height)
26
  CAMERA_DISTANCE = 10.0 # meters (assumed camera distance from pitch)
27
- MAX_POSITION_JUMP = 200 # Increased to include more detections
28
 
29
  def process_video(video_path):
30
  if not os.path.exists(video_path):
@@ -50,27 +50,34 @@ def process_video(video_path):
50
  break
51
  frame_count += 1
52
  frames.append(frame.copy())
53
- # Enhance frame contrast and apply adaptive thresholding
54
- frame = cv2.convertScaleAbs(frame, alpha=1.3, beta=10)
55
- gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
56
- frame = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
57
- frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)
58
- results = model.predict(frame, conf=CONF_THRESHOLD, imgsz=(img_height, img_width), iou=0.5, max_det=3)
59
  detections = sum(1 for detection in results[0].boxes if detection.cls == 0)
60
- if detections == 1: # Only process frames with exactly one ball detection
 
 
 
61
  for detection in results[0].boxes:
62
  if detection.cls == 0: # Class 0 is the ball
63
  conf = detection.conf.cpu().numpy()[0]
64
- x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
65
- # Scale coordinates back to original frame size
66
- x1 = x1 * frame_width / img_width
67
- x2 = x2 * frame_width / img_width
68
- y1 = y1 * frame_height / img_height
69
- y2 = y2 * frame_height / img_height
70
- ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
71
- detection_frames.append(frame_count - 1)
72
- cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
73
- debug_log.append(f"Frame {frame_count}: 1 ball detection, confidence={conf:.3f}")
 
 
 
 
 
74
  else:
75
  debug_log.append(f"Frame {frame_count}: {detections} ball detections")
76
  frames[-1] = frame
@@ -79,9 +86,9 @@ def process_video(video_path):
79
  cap.release()
80
 
81
  if not ball_positions:
82
- debug_log.append("No frames with exactly one ball detection")
83
  else:
84
- debug_log.append(f"Total frames with one ball detection: {len(ball_positions)}")
85
  debug_log.append(f"Video resolution: {frame_width}x{frame_height}")
86
  debug_log.append(f"Video frame rate: {FRAME_RATE}")
87
 
@@ -152,7 +159,7 @@ def estimate_trajectory(ball_positions, frames, detection_frames):
152
 
153
  # Generate dense points for all frames between first and last detection
154
  total_frames = max(detection_frames) - min(detection_frames) + 1
155
- t_full = np.linspace(times[0], times[-1], total_frames * SLOW_MOTION_FACTOR)
156
  x_full = fx(t_full)
157
  y_full = fy(t_full)
158
  trajectory_2d = list(zip(x_full, y_full))
 
18
  BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
19
  FRAME_RATE = 20 # Default frame rate, updated dynamically
20
  SLOW_MOTION_FACTOR = 1.5 # Faster replay (e.g., 30 / 1.5 = 20 FPS)
21
+ CONF_THRESHOLD = 0.15 # Lowered for better detection
22
  IMPACT_ZONE_Y = 0.9 # Adjusted to 90% of frame height for impact zone
23
  PITCH_LENGTH = 20.12 # meters (standard cricket pitch length)
24
  STUMPS_HEIGHT = 0.71 # meters (stumps height)
25
  CAMERA_HEIGHT = 2.0 # meters (assumed camera height)
26
  CAMERA_DISTANCE = 10.0 # meters (assumed camera distance from pitch)
27
+ MAX_POSITION_JUMP = 250 # Increased to include more detections
28
 
29
  def process_video(video_path):
30
  if not os.path.exists(video_path):
 
50
  break
51
  frame_count += 1
52
  frames.append(frame.copy())
53
+ # Enhance frame contrast and sharpness
54
+ frame = cv2.convertScaleAbs(frame, alpha=1.5, beta=20)
55
+ kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
56
+ frame = cv2.filter2D(frame, -1, kernel)
57
+ results = model.predict(frame, conf=CONF_THRESHOLD, imgsz=(img_height, img_width), iou=0.5, max_det=5)
 
58
  detections = sum(1 for detection in results[0].boxes if detection.cls == 0)
59
+ if detections >= 1: # Process frames with at least one ball detection
60
+ max_conf = 0
61
+ best_detection = None
62
+ conf_scores = []
63
  for detection in results[0].boxes:
64
  if detection.cls == 0: # Class 0 is the ball
65
  conf = detection.conf.cpu().numpy()[0]
66
+ conf_scores.append(conf)
67
+ if conf > max_conf:
68
+ max_conf = conf
69
+ best_detection = detection
70
+ if best_detection:
71
+ x1, y1, x2, y2 = best_detection.xyxy[0].cpu().numpy()
72
+ # Scale coordinates back to original frame size
73
+ x1 = x1 * frame_width / img_width
74
+ x2 = x2 * frame_width / img_width
75
+ y1 = y1 * frame_height / img_height
76
+ y2 = y2 * frame_height / img_height
77
+ ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
78
+ detection_frames.append(frame_count - 1)
79
+ cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
80
+ debug_log.append(f"Frame {frame_count}: {detections} ball detections, selected confidence={max_conf:.3f}, all confidences={conf_scores}")
81
  else:
82
  debug_log.append(f"Frame {frame_count}: {detections} ball detections")
83
  frames[-1] = frame
 
86
  cap.release()
87
 
88
  if not ball_positions:
89
+ debug_log.append("No frames with ball detection")
90
  else:
91
+ debug_log.append(f"Total frames with ball detection: {len(ball_positions)}")
92
  debug_log.append(f"Video resolution: {frame_width}x{frame_height}")
93
  debug_log.append(f"Video frame rate: {FRAME_RATE}")
94
 
 
159
 
160
  # Generate dense points for all frames between first and last detection
161
  total_frames = max(detection_frames) - min(detection_frames) + 1
162
+ t_full = np.linspace(min(detection_frames) / FRAME_RATE, max(detection_frames) / FRAME_RATE, int(total_frames * SLOW_MOTION_FACTOR))
163
  x_full = fx(t_full)
164
  y_full = fy(t_full)
165
  trajectory_2d = list(zip(x_full, y_full))