Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,12 +13,10 @@ model = YOLO("best.pt")
|
|
13 |
# Constants for LBW decision and video processing
|
14 |
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
|
15 |
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
|
16 |
-
FRAME_RATE = 20 # Input video frame rate
|
17 |
-
SLOW_MOTION_FACTOR = 3 # Adjusted for 20 FPS
|
18 |
CONF_THRESHOLD = 0.25 # Confidence threshold for detection
|
19 |
-
IMPACT_ZONE_Y = 0.85 # Fraction of frame height
|
20 |
-
PITCH_ZONE_Y = 0.75 # Fraction of frame height for pitch zone
|
21 |
-
IMPACT_DELTA_Y = 50 # Pixels for detecting sudden y-position change
|
22 |
|
23 |
def process_video(video_path):
|
24 |
if not os.path.exists(video_path):
|
@@ -26,7 +24,7 @@ def process_video(video_path):
|
|
26 |
cap = cv2.VideoCapture(video_path)
|
27 |
frames = []
|
28 |
ball_positions = []
|
29 |
-
detection_frames = [] # Track frames with
|
30 |
debug_log = []
|
31 |
|
32 |
frame_count = 0
|
@@ -37,55 +35,55 @@ def process_video(video_path):
|
|
37 |
frame_count += 1
|
38 |
frames.append(frame.copy())
|
39 |
results = model.predict(frame, conf=CONF_THRESHOLD)
|
40 |
-
detections =
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
frames[-1] = frame
|
47 |
-
debug_log.append(f"Frame {frame_count}: {
|
48 |
cap.release()
|
49 |
|
50 |
if not ball_positions:
|
51 |
-
debug_log.append("No
|
52 |
else:
|
53 |
-
debug_log.append(f"Total
|
54 |
|
55 |
return frames, ball_positions, detection_frames, "\n".join(debug_log)
|
56 |
|
57 |
-
def estimate_trajectory(ball_positions,
|
58 |
if len(ball_positions) < 2:
|
59 |
-
return None, None, None,
|
|
|
60 |
frame_height = frames[0].shape[0]
|
61 |
-
|
62 |
# Extract x, y coordinates
|
63 |
x_coords = [pos[0] for pos in ball_positions]
|
64 |
y_coords = [pos[1] for pos in ball_positions]
|
65 |
-
times = np.
|
66 |
|
67 |
-
#
|
68 |
-
|
69 |
for i, y in enumerate(y_coords):
|
70 |
-
if y > frame_height *
|
71 |
-
|
72 |
break
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
# Impact point: sudden y-change or y exceeds IMPACT_ZONE_Y
|
77 |
impact_idx = None
|
78 |
-
for i in
|
79 |
-
if
|
80 |
-
abs(y_coords[i] - y_coords[i-1]) > IMPACT_DELTA_Y):
|
81 |
impact_idx = i
|
82 |
break
|
83 |
if impact_idx is None:
|
84 |
-
impact_idx = len(ball_positions) - 1
|
|
|
85 |
impact_point = ball_positions[impact_idx]
|
86 |
-
impact_frame = detection_frames[impact_idx]
|
87 |
|
88 |
-
# Use
|
89 |
x_coords = x_coords[:impact_idx + 1]
|
90 |
y_coords = y_coords[:impact_idx + 1]
|
91 |
times = times[:impact_idx + 1]
|
@@ -94,111 +92,118 @@ def estimate_trajectory(ball_positions, detection_frames, frames):
|
|
94 |
fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
|
95 |
fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
|
96 |
except Exception as e:
|
97 |
-
return None, None, None,
|
98 |
|
99 |
-
#
|
100 |
-
vis_trajectory = list(zip(x_coords, y_coords))
|
101 |
-
|
102 |
-
# Full trajectory for LBW (includes projection)
|
103 |
t_full = np.linspace(times[0], times[-1] + 0.5, len(times) + 10)
|
104 |
x_full = fx(t_full)
|
105 |
y_full = fy(t_full)
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
f"Pitch point at frame {pitch_frame + 1}: ({pitch_point[0]:.1f}, {pitch_point[1]:.1f})\n"
|
110 |
-
f"Impact point at frame {impact_frame + 1}: ({impact_point[0]:.1f}, {impact_point[1]:.1f})")
|
111 |
-
return full_trajectory, vis_trajectory, pitch_point, pitch_frame, impact_point, impact_frame, debug_log
|
112 |
|
113 |
-
def lbw_decision(ball_positions,
|
114 |
if not frames:
|
115 |
return "Error: No frames processed", None, None, None
|
116 |
-
if not
|
117 |
-
return "Not enough data (insufficient
|
118 |
|
119 |
frame_height, frame_width = frames[0].shape[:2]
|
120 |
stumps_x = frame_width / 2
|
121 |
-
stumps_y = frame_height * 0.9
|
122 |
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
|
123 |
|
124 |
pitch_x, pitch_y = pitch_point
|
125 |
impact_x, impact_y = impact_point
|
126 |
|
127 |
-
# Check pitching point
|
128 |
if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
|
129 |
-
return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})",
|
130 |
|
131 |
-
# Check impact point
|
132 |
if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
|
133 |
-
return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})",
|
134 |
|
135 |
# Check trajectory hitting stumps
|
136 |
-
for x, y in
|
137 |
if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
|
138 |
-
return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})",
|
139 |
-
|
|
|
140 |
|
141 |
-
def generate_slow_motion(frames,
|
142 |
if not frames:
|
143 |
return None
|
144 |
-
frame_height, frame_width = frames[0].shape[:2]
|
145 |
-
|
146 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
147 |
-
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (
|
|
|
|
|
148 |
|
149 |
-
|
150 |
-
|
151 |
|
152 |
for i, frame in enumerate(frames):
|
153 |
-
# Draw trajectory (blue line) only for
|
154 |
if i in detection_frames and trajectory_points.size > 0:
|
155 |
-
|
156 |
-
if idx <= len(trajectory_points):
|
157 |
-
cv2.polylines(frame, [trajectory_points[:idx]], False, (255, 0, 0), 2)
|
158 |
|
159 |
-
# Draw pitch point (red circle)
|
160 |
-
if pitch_point and
|
161 |
x, y = pitch_point
|
|
|
|
|
|
|
162 |
cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1)
|
163 |
cv2.putText(frame, "Pitch Point", (int(x) + 10, int(y) - 10),
|
164 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
165 |
|
166 |
-
# Draw impact point (yellow circle)
|
167 |
-
if impact_point and
|
168 |
x, y = impact_point
|
|
|
|
|
|
|
169 |
cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), -1)
|
170 |
cv2.putText(frame, "Impact Point", (int(x) + 10, int(y) + 20),
|
171 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
for _ in range(SLOW_MOTION_FACTOR):
|
174 |
out.write(frame)
|
|
|
175 |
out.release()
|
176 |
return output_path
|
177 |
|
178 |
def drs_review(video):
|
179 |
frames, ball_positions, detection_frames, debug_log = process_video(video)
|
180 |
if not frames:
|
181 |
-
return f"Error: Failed to process video
|
182 |
-
|
183 |
-
decision,
|
184 |
|
185 |
output_path = f"output_{uuid.uuid4()}.mp4"
|
186 |
-
slow_motion_path = generate_slow_motion(frames,
|
187 |
|
188 |
-
|
189 |
-
return f"DRS Decision: {decision}\nDebug Log:\n{debug_output}", slow_motion_path
|
190 |
|
191 |
# Gradio interface
|
192 |
iface = gr.Interface(
|
193 |
fn=drs_review,
|
194 |
inputs=gr.Video(label="Upload Video Clip"),
|
195 |
outputs=[
|
196 |
-
gr.Textbox(label="DRS Decision
|
197 |
-
gr.Video(label="
|
198 |
],
|
199 |
title="AI-Powered DRS for LBW in Local Cricket",
|
200 |
-
description="Upload a video clip of a cricket delivery to get an LBW decision and slow-motion replay showing ball detection (green boxes), trajectory (blue line), pitch point (red circle),
|
201 |
)
|
202 |
|
203 |
if __name__ == "__main__":
|
204 |
-
iface.launch()
|
|
|
13 |
# Constants for LBW decision and video processing
|
14 |
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
|
15 |
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
|
16 |
+
FRAME_RATE = 20 # Input video frame rate (reduced to 20 FPS)
|
17 |
+
SLOW_MOTION_FACTOR = 3 # Adjusted for 20 FPS (slower playback without being too slow)
|
18 |
CONF_THRESHOLD = 0.25 # Confidence threshold for detection
|
19 |
+
IMPACT_ZONE_Y = 0.85 # Fraction of frame height where impact is likely (near stumps)
|
|
|
|
|
20 |
|
21 |
def process_video(video_path):
|
22 |
if not os.path.exists(video_path):
|
|
|
24 |
cap = cv2.VideoCapture(video_path)
|
25 |
frames = []
|
26 |
ball_positions = []
|
27 |
+
detection_frames = [] # Track frames with detections
|
28 |
debug_log = []
|
29 |
|
30 |
frame_count = 0
|
|
|
35 |
frame_count += 1
|
36 |
frames.append(frame.copy())
|
37 |
results = model.predict(frame, conf=CONF_THRESHOLD)
|
38 |
+
detections = 0
|
39 |
+
for detection in results[0].boxes:
|
40 |
+
if detection.cls == 0: # Assuming class 0 is the ball
|
41 |
+
detections += 1
|
42 |
+
x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
|
43 |
+
ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
|
44 |
+
detection_frames.append(frame_count - 1) # Store frame index (0-based)
|
45 |
+
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
46 |
frames[-1] = frame
|
47 |
+
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
|
48 |
cap.release()
|
49 |
|
50 |
if not ball_positions:
|
51 |
+
debug_log.append("No balls detected in any frame")
|
52 |
else:
|
53 |
+
debug_log.append(f"Total ball detections: {len(ball_positions)}")
|
54 |
|
55 |
return frames, ball_positions, detection_frames, "\n".join(debug_log)
|
56 |
|
57 |
+
def estimate_trajectory(ball_positions, frames):
|
58 |
if len(ball_positions) < 2:
|
59 |
+
return None, None, None, "Error: Fewer than 2 ball detections for trajectory"
|
60 |
+
|
61 |
frame_height = frames[0].shape[0]
|
62 |
+
|
63 |
# Extract x, y coordinates
|
64 |
x_coords = [pos[0] for pos in ball_positions]
|
65 |
y_coords = [pos[1] for pos in ball_positions]
|
66 |
+
times = np.arange(len(ball_positions)) / FRAME_RATE
|
67 |
|
68 |
+
# Detect the pitch point: find when the ball touches the ground
|
69 |
+
pitch_point = None
|
70 |
for i, y in enumerate(y_coords):
|
71 |
+
if y > frame_height * 0.75: # Threshold for ground contact (near the bottom of the frame)
|
72 |
+
pitch_point = ball_positions[i]
|
73 |
break
|
74 |
+
|
75 |
+
# Find impact point (closest to batsman, near stumps)
|
|
|
|
|
76 |
impact_idx = None
|
77 |
+
for i, y in enumerate(y_coords):
|
78 |
+
if y > frame_height * IMPACT_ZONE_Y: # Ball is near stumps/batsman
|
|
|
79 |
impact_idx = i
|
80 |
break
|
81 |
if impact_idx is None:
|
82 |
+
impact_idx = len(ball_positions) - 1 # Fallback to last detection
|
83 |
+
|
84 |
impact_point = ball_positions[impact_idx]
|
|
|
85 |
|
86 |
+
# Use positions up to impact for interpolation
|
87 |
x_coords = x_coords[:impact_idx + 1]
|
88 |
y_coords = y_coords[:impact_idx + 1]
|
89 |
times = times[:impact_idx + 1]
|
|
|
92 |
fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
|
93 |
fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
|
94 |
except Exception as e:
|
95 |
+
return None, None, None, f"Error in trajectory interpolation: {str(e)}"
|
96 |
|
97 |
+
# Project trajectory (detected + future for LBW decision)
|
|
|
|
|
|
|
98 |
t_full = np.linspace(times[0], times[-1] + 0.5, len(times) + 10)
|
99 |
x_full = fx(t_full)
|
100 |
y_full = fy(t_full)
|
101 |
+
trajectory = list(zip(x_full, y_full))
|
102 |
|
103 |
+
return trajectory, pitch_point, impact_point, "Trajectory estimated successfully"
|
|
|
|
|
|
|
104 |
|
105 |
+
def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point):
|
106 |
if not frames:
|
107 |
return "Error: No frames processed", None, None, None
|
108 |
+
if not trajectory or len(ball_positions) < 2:
|
109 |
+
return "Not enough data (insufficient ball detections)", None, None, None
|
110 |
|
111 |
frame_height, frame_width = frames[0].shape[:2]
|
112 |
stumps_x = frame_width / 2
|
113 |
+
stumps_y = frame_height * 0.9 # Position of the stumps at the bottom of the frame
|
114 |
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
|
115 |
|
116 |
pitch_x, pitch_y = pitch_point
|
117 |
impact_x, impact_y = impact_point
|
118 |
|
119 |
+
# Check pitching point - the ball should land between stumps
|
120 |
if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
|
121 |
+
return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", trajectory, pitch_point, impact_point
|
122 |
|
123 |
+
# Check impact point - the ball should hit within the stumps area
|
124 |
if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
|
125 |
+
return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
|
126 |
|
127 |
# Check trajectory hitting stumps
|
128 |
+
for x, y in trajectory:
|
129 |
if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
|
130 |
+
return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
|
131 |
+
|
132 |
+
return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
|
133 |
|
134 |
+
def generate_slow_motion(frames, trajectory, pitch_point, impact_point, detection_frames, output_path):
|
135 |
if not frames:
|
136 |
return None
|
|
|
|
|
137 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
138 |
+
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frames[0].shape[1], frames[0].shape[0]))
|
139 |
+
|
140 |
+
trajectory_points = np.array(trajectory[:len(detection_frames)], dtype=np.int32).reshape((-1, 1, 2))
|
141 |
|
142 |
+
pitch_point_detected = False
|
143 |
+
impact_point_detected = False
|
144 |
|
145 |
for i, frame in enumerate(frames):
|
146 |
+
# Draw trajectory (blue line) only for frames with detections
|
147 |
if i in detection_frames and trajectory_points.size > 0:
|
148 |
+
cv2.polylines(frame, [trajectory_points[:detection_frames.index(i) + 1]], False, (255, 0, 0), 2)
|
|
|
|
|
149 |
|
150 |
+
# Draw pitch point (red circle with label) when the ball touches the ground
|
151 |
+
if pitch_point and not pitch_point_detected:
|
152 |
x, y = pitch_point
|
153 |
+
if y > frame.shape[0] * 0.75: # Adjust this threshold for the ground position
|
154 |
+
pitch_point_detected = True
|
155 |
+
if pitch_point_detected:
|
156 |
cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1)
|
157 |
cv2.putText(frame, "Pitch Point", (int(x) + 10, int(y) - 10),
|
158 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
159 |
|
160 |
+
# Draw impact point (yellow circle with label) when ball is near stumps
|
161 |
+
if impact_point and not impact_point_detected:
|
162 |
x, y = impact_point
|
163 |
+
if y > frame.shape[0] * 0.85: # Adjust this threshold for impact point
|
164 |
+
impact_point_detected = True
|
165 |
+
if impact_point_detected:
|
166 |
cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), -1)
|
167 |
cv2.putText(frame, "Impact Point", (int(x) + 10, int(y) + 20),
|
168 |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
|
169 |
|
170 |
+
# Add wicket lines for the stumps
|
171 |
+
stumps_x = frame.shape[1] // 2
|
172 |
+
stumps_y = frame.shape[0] * 0.9
|
173 |
+
stumps_width = frame.shape[1] * 0.1
|
174 |
+
cv2.line(frame, (int(stumps_x - stumps_width / 2), int(stumps_y)),
|
175 |
+
(int(stumps_x + stumps_width / 2), int(stumps_y)), (0, 255, 0), 3)
|
176 |
+
|
177 |
+
# Write frames to output video
|
178 |
for _ in range(SLOW_MOTION_FACTOR):
|
179 |
out.write(frame)
|
180 |
+
|
181 |
out.release()
|
182 |
return output_path
|
183 |
|
184 |
def drs_review(video):
|
185 |
frames, ball_positions, detection_frames, debug_log = process_video(video)
|
186 |
if not frames:
|
187 |
+
return f"Error: Failed to process video", None
|
188 |
+
trajectory, pitch_point, impact_point, trajectory_log = estimate_trajectory(ball_positions, frames)
|
189 |
+
decision, trajectory, pitch_point, impact_point = lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point)
|
190 |
|
191 |
output_path = f"output_{uuid.uuid4()}.mp4"
|
192 |
+
slow_motion_path = generate_slow_motion(frames, trajectory, pitch_point, impact_point, detection_frames, output_path)
|
193 |
|
194 |
+
return f"DRS Decision: {decision}", slow_motion_path
|
|
|
195 |
|
196 |
# Gradio interface
|
197 |
iface = gr.Interface(
|
198 |
fn=drs_review,
|
199 |
inputs=gr.Video(label="Upload Video Clip"),
|
200 |
outputs=[
|
201 |
+
gr.Textbox(label="DRS Decision"),
|
202 |
+
gr.Video(label="Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue Line), Pitch Point (Red), Impact Point (Yellow), Wicket Lines")
|
203 |
],
|
204 |
title="AI-Powered DRS for LBW in Local Cricket",
|
205 |
+
description="Upload a video clip of a cricket delivery to get an LBW decision and slow-motion replay showing ball detection (green boxes), trajectory (blue line), pitch point (red circle), impact point (yellow circle), and wicket lines."
|
206 |
)
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
+
iface.launch()
|