AjaykumarPilla commited on
Commit
a4e37d9
·
verified ·
1 Parent(s): 64d67f5

Upload 9 files

Browse files
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import logging
4
+ from gully_drs_core.ball_detection import process_video
5
+
6
+ # Set up logging
7
+ logging.basicConfig(level=logging.INFO)
8
+ logger = logging.getLogger(__name__)
9
+
10
+ # Streamlit configuration
11
+ st.set_page_config(page_title="GullyDRS", layout="wide")
12
+ st.title("GullyDRS - AI-Powered Decision Review System")
13
+
14
+ # Directories for uploads and outputs
15
+ UPLOAD_DIR = "uploads"
16
+ OUTPUT_DIR = "outputs"
17
+ os.makedirs(UPLOAD_DIR, exist_ok=True)
18
+ os.makedirs(OUTPUT_DIR, exist_ok=True)
19
+
20
+ def main():
21
+ st.header("Upload Match Video for DRS Analysis")
22
+ uploaded_file = st.file_uploader("Choose a video file (MP4, AVI)", type=["mp4", "avi"])
23
+
24
+ if uploaded_file is not None:
25
+ try:
26
+ # Save uploaded video
27
+ video_path = os.path.join(UPLOAD_DIR, uploaded_file.name)
28
+ with open(video_path, "wb") as f:
29
+ f.write(uploaded_file.getbuffer())
30
+ st.success(f"Video '{uploaded_file.name}' uploaded successfully!")
31
+
32
+ # Process video
33
+ with st.spinner("Processing video for DRS analysis..."):
34
+ result = process_video(video_path)
35
+ if result["status"] == "success":
36
+ # Display replay video (live preview)
37
+ st.subheader("Replay Video")
38
+ st.video(result["replay_path"])
39
+ st.write(f"**LBW Decision**: {result['decision']}")
40
+ st.write(f"**Ball Speed**: {result['speed_kmh']:.2f} km/h")
41
+ # External test frame (local file access for testing)
42
+ st.subheader("External Replay (Test Frame)")
43
+ st.markdown(f'<video width="640" height="360" controls><source src="file://{result["replay_path"]}" type="video/mp4"></video>', unsafe_allow_html=True)
44
+ else:
45
+ st.error(f"Error: {result['error']}")
46
+ except Exception as e:
47
+ logger.error(f"Error processing video: {str(e)}")
48
+ st.error(f"Failed to process video: {str(e)}")
49
+
50
+ if __name__ == "__main__":
51
+ main()
gully_drs_core/ball_detection.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+ import logging
5
+ import os
6
+ from gully_drs_core.replay_utils import generate_replay
7
+ from gully_drs_core.video_utils import get_video_properties
8
+ from gully_drs_core.model_utils import load_yolo_model
9
+
10
+ # Set up logging
11
+ logging.basicConfig(level=logging.INFO)
12
+ logger = logging.getLogger(__name__)
13
+
14
+ # Load YOLOv5 model
15
+ model = load_yolo_model()
16
+
17
+ # Stump zone coordinates (example, adjust based on video resolution)
18
+ STUMP_ZONE = [(200, 400), (300, 400), (300, 600), (200, 600)] # [x1,y1, x2,y2, x3,y3, x4,y4]
19
+
20
+ def process_video(video_path):
21
+ try:
22
+ # Validate video file
23
+ if not os.path.exists(video_path):
24
+ return {"status": "error", "error": "Video file not found"}
25
+
26
+ # Get video properties
27
+ fps, width, height = get_video_properties(video_path)
28
+ if fps == 0:
29
+ return {"status": "error", "error": "Invalid video file"}
30
+
31
+ # Initialize video capture
32
+ cap = cv2.VideoCapture(video_path)
33
+ ball_positions = []
34
+ bounce_point = None
35
+ frame_count = 0
36
+
37
+ while cap.isOpened():
38
+ ret, frame = cap.read()
39
+ if not ret:
40
+ break
41
+
42
+ # Detect ball using YOLOv5
43
+ results = model(frame)
44
+ detections = results.xyxy[0].cpu().numpy() # [x1, y1, x2, y2, conf, class]
45
+
46
+ ball_center = None
47
+ for det in detections:
48
+ if det[5] == 0: # Assuming class 0 is the ball
49
+ x1, y1, x2, y2 = map(int, det[:4])
50
+ ball_center = ((x1 + x2) // 2, (y1 + y2) // 2)
51
+ ball_positions.append(ball_center)
52
+ # Detect bounce point (simplified: assume bounce near ground)
53
+ if y1 > height * 0.8 and bounce_point is None:
54
+ bounce_point = ball_center
55
+ break
56
+
57
+ frame_count += 1
58
+
59
+ cap.release()
60
+
61
+ # Check LBW decision
62
+ decision = "Not Out"
63
+ for pos in ball_positions:
64
+ if is_ball_in_stump_zone(pos):
65
+ decision = "Out"
66
+ break
67
+
68
+ # Calculate speed (pixels per frame to km/h)
69
+ speed_kmh = 0
70
+ if len(ball_positions) >= 2:
71
+ pixel_dist = np.sqrt((ball_positions[-1][0] - ball_positions[-2][0])**2 +
72
+ (ball_positions[-1][1] - ball_positions[-2][1])**2)
73
+ speed_kmh = (pixel_dist / (1/fps)) * 0.036 # Simplified conversion, adjust scale factor
74
+
75
+ # Generate replay video
76
+ replay_path = generate_replay(video_path, ball_positions, STUMP_ZONE, decision, speed_kmh, bounce_point)
77
+
78
+ return {
79
+ "status": "success",
80
+ "decision": decision,
81
+ "speed_kmh": speed_kmh,
82
+ "replay_path": replay_path
83
+ }
84
+ except Exception as e:
85
+ logger.error(f"Error processing video: {str(e)}")
86
+ return {"status": "error", "error": str(e)}
87
+
88
+ def is_ball_in_stump_zone(ball_center):
89
+ x, y = ball_center
90
+ x1, y1, x2, y2, x3, y3, x4, y4 = STUMP_ZONE[0] + STUMP_ZONE[1] + STUMP_ZONE[2] + STUMP_ZONE[3]
91
+ return (x1 <= x <= x2) and (y1 <= y <= y3)
gully_drs_core/init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # Package initialization for gully_drs_core
gully_drs_core/model_utils.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import logging
3
+
4
+ # Set up logging
5
+ logging.basicConfig(level=logging.INFO)
6
+ logger = logging.getLogger(__name__)
7
+
8
+ def load_yolo_model():
9
+ try:
10
+ # Load YOLOv5s model (use pre-trained or fine-tuned weights)
11
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
12
+ model.eval()
13
+ logger.info("YOLOv5 model loaded successfully")
14
+ return model
15
+ except Exception as e:
16
+ logger.error(f"Error loading YOLOv5 model: {str(e)}")
17
+ raise
gully_drs_core/replay_utils.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ from scipy.interpolate import CubicSpline
4
+ import os
5
+ from gully_drs_core.video_utils import get_video_properties
6
+
7
+ def generate_replay(video_path, ball_positions, stump_zone, decision, speed_kmh, bounce_point):
8
+ try:
9
+ # Get video properties
10
+ fps, width, height = get_video_properties(video_path)
11
+
12
+ # Initialize video capture and output
13
+ cap = cv2.VideoCapture(video_path)
14
+ output_path = os.path.join("outputs", f"replay_{os.path.basename(video_path)}")
15
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
16
+ out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
17
+
18
+ frame_idx = 0
19
+
20
+ while cap.isOpened():
21
+ ret, frame = cap.read()
22
+ if not ret:
23
+ break
24
+
25
+ # Draw stump zone
26
+ cv2.polylines(frame, [np.array(stump_zone)], isClosed=True, color=(0, 0, 255), thickness=2)
27
+
28
+ # Draw ball position
29
+ if frame_idx < len(ball_positions):
30
+ x, y = ball_positions[frame_idx]
31
+ cv2.circle(frame, (x, y), 5, (0, 255, 0), -1)
32
+
33
+ # Draw bounce point
34
+ if bounce_point and frame_idx >= len(ball_positions) // 2:
35
+ cv2.circle(frame, bounce_point, 8, (255, 255, 0), -1)
36
+
37
+ # Draw Bezier curve trajectory
38
+ if len(ball_positions) > 3 and frame_idx < len(ball_positions):
39
+ points = np.array(ball_positions[:frame_idx + 1])
40
+ if len(points) > 3:
41
+ t = np.linspace(0, 1, len(points))
42
+ cs_x = CubicSpline(t, points[:, 0])
43
+ cs_y = CubicSpline(t, points[:, 1])
44
+ t_fine = np.linspace(0, 1, min(100, len(points) * 10))
45
+ curve_x = cs_x(t_fine).astype(int)
46
+ curve_y = cs_y(t_fine).astype(int)
47
+ for i in range(1, len(curve_x)):
48
+ cv2.line(frame, (curve_x[i-1], curve_y[i-1]), (curve_x[i], curve_y[i]), (255, 0, 0), 2)
49
+
50
+ # Add text overlays
51
+ cv2.putText(frame, f"Decision: {decision}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
52
+ cv2.putText(frame, f"Speed: {speed_kmh:.2f} km/h", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
53
+
54
+ out.write(frame)
55
+ frame_idx += 1
56
+
57
+ cap.release()
58
+ out.release()
59
+ return output_path
60
+ except Exception as e:
61
+ raise Exception(f"Error generating replay: {str(e)}")
gully_drs_core/video_utils.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import logging
3
+
4
+ # Set up logging
5
+ logging.basicConfig(level=logging.INFO)
6
+ logger = logging.getLogger(__name__)
7
+
8
+ def get_video_properties(video_path):
9
+ try:
10
+ cap = cv2.VideoCapture(video_path)
11
+ if not cap.isOpened():
12
+ logger.error("Failed to open video file")
13
+ return 0, 0, 0
14
+ fps = cap.get(cv2.CAP_PROP_FPS)
15
+ width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
16
+ height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
17
+ cap.release()
18
+ return fps, width, height
19
+ except Exception as e:
20
+ logger.error(f"Error getting video properties: {str(e)}")
21
+ return 0, 0, 0
pages/live_match.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ st.set_page_config(page_title="GullyDRS - Live Match")
4
+ st.title("GullyDRS - Live Match")
5
+ st.write("Live match analysis is planned for future phases.")
pages/upload_analysis.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ st.set_page_config(page_title="GullyDRS - Upload Analysis")
4
+ st.title("GullyDRS - Upload Analysis")
5
+ st.write("Upload a match video for DRS analysis. Navigate to the Home page to process videos.")
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ streamlit==1.35.0
2
+ opencv-python==4.10.0
3
+ torch==2.0.1
4
+ yolov5==7.0.12
5
+ numpy==1.26.4
6
+ scipy==1.13.1