Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pickle
|
4 |
+
import streamlit.components.v1 as components
|
5 |
+
from sklearn.preprocessing import LabelEncoder
|
6 |
+
le = LabelEncoder()
|
7 |
+
|
8 |
+
# Load the pickled model
|
9 |
+
def load_model():
|
10 |
+
return pickle.load(open('Credit_Card_Classification_LogisticRegression.pkl','rb'))
|
11 |
+
|
12 |
+
# Function for model prediction
|
13 |
+
def model_prediction(model, features):
|
14 |
+
predicted = str(model.predict(features)[0])
|
15 |
+
return predicted
|
16 |
+
|
17 |
+
def transform(text):
|
18 |
+
text = le.fit_transform(text)
|
19 |
+
return text[0]
|
20 |
+
|
21 |
+
def app_design():
|
22 |
+
# Add input fields for High, Open, and Low values
|
23 |
+
image = 'credit.png'
|
24 |
+
st.image(image, use_column_width=True)
|
25 |
+
|
26 |
+
st.subheader("Enter the following values:")
|
27 |
+
|
28 |
+
Gender= st.selectbox("Gender",('Yes','No'))
|
29 |
+
if Gender == 'Yes':
|
30 |
+
Gender = 1
|
31 |
+
else:
|
32 |
+
Gender = 0
|
33 |
+
Age= st.number_input("Age")
|
34 |
+
Debt= st.number_input("Debt")
|
35 |
+
Married= st.selectbox("Married",('Yes','No'))
|
36 |
+
if Married == 'Yes':
|
37 |
+
Married = 1
|
38 |
+
else:
|
39 |
+
Married = 0
|
40 |
+
BankCustomer= st.number_input("Bank Customer")
|
41 |
+
Industry= st.text_input("Industry")
|
42 |
+
Industry = transform([Industry])
|
43 |
+
Ethnicity= st.text_input("Ethnicity")
|
44 |
+
Ethnicity = transform([Ethnicity])
|
45 |
+
YearsEmployed = st.number_input("Years Employed")
|
46 |
+
PriorDefault= st.selectbox("Prior Default",('Yes','No'))
|
47 |
+
if PriorDefault == 'Yes':
|
48 |
+
PriorDefault = 1
|
49 |
+
else:
|
50 |
+
PriorDefault = 0
|
51 |
+
Employed= st.selectbox("Employed",('Yes','No'))
|
52 |
+
if Employed == 'Yes':
|
53 |
+
Employed = 1
|
54 |
+
else:
|
55 |
+
Employed = 0
|
56 |
+
CreditScore = st.number_input("Credit Score")
|
57 |
+
DriversLicense= st.selectbox("Drivers License",('Yes','No'))
|
58 |
+
if DriversLicense == 'Yes':
|
59 |
+
DriversLicense = 1
|
60 |
+
else:
|
61 |
+
DriversLicense = 0
|
62 |
+
Citizen= st.selectbox("Citizen",('ByBirth','ByOtherMeans'))
|
63 |
+
if Citizen == 'ByBirth':
|
64 |
+
Citizen = 1
|
65 |
+
else:
|
66 |
+
Citizen = 0
|
67 |
+
ZipCode= st.number_input("ZipCode")
|
68 |
+
Income= st.number_input("Income")
|
69 |
+
|
70 |
+
# Create a feature list from the user inputs
|
71 |
+
features = [[Gender, Age,Debt,Married,BankCustomer,Industry,Ethnicity,YearsEmployed,PriorDefault,Employed,CreditScore,DriversLicense,Citizen,ZipCode,Income]]
|
72 |
+
|
73 |
+
# Load the model
|
74 |
+
model = load_model()
|
75 |
+
|
76 |
+
# Make a prediction when the user clicks the "Predict" button
|
77 |
+
if st.button('Predict Status'):
|
78 |
+
predicted_value = model_prediction(model, features)
|
79 |
+
if(predicted_value==1):
|
80 |
+
st.success(f"The credit card is approved")
|
81 |
+
|
82 |
+
else:
|
83 |
+
st.success(f"The credit card is not approved")
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
def main():
|
89 |
+
|
90 |
+
# Set the app title and add your website name and logo
|
91 |
+
st.set_page_config(
|
92 |
+
page_title="Credit Card Classification Model",
|
93 |
+
page_icon=":chart_with_upwards_trend:",
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
st.title("Welcome to our Credit Card Classification Model!")
|
98 |
+
app_design()
|
99 |
+
|
100 |
+
|
101 |
+
if __name__ == '__main__':
|
102 |
+
main()
|