AjiNiktech commited on
Commit
1de592b
·
verified ·
1 Parent(s): 92b9d1b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -0
app.py CHANGED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pickle
4
+ import streamlit.components.v1 as components
5
+ from sklearn.preprocessing import LabelEncoder
6
+ le = LabelEncoder()
7
+
8
+ # Load the pickled model
9
+ def load_model():
10
+ return pickle.load(open('Credit_Card_Classification_LogisticRegression.pkl','rb'))
11
+
12
+ # Function for model prediction
13
+ def model_prediction(model, features):
14
+ predicted = str(model.predict(features)[0])
15
+ return predicted
16
+
17
+ def transform(text):
18
+ text = le.fit_transform(text)
19
+ return text[0]
20
+
21
+ def app_design():
22
+ # Add input fields for High, Open, and Low values
23
+ image = 'credit.png'
24
+ st.image(image, use_column_width=True)
25
+
26
+ st.subheader("Enter the following values:")
27
+
28
+ Gender= st.selectbox("Gender",('Yes','No'))
29
+ if Gender == 'Yes':
30
+ Gender = 1
31
+ else:
32
+ Gender = 0
33
+ Age= st.number_input("Age")
34
+ Debt= st.number_input("Debt")
35
+ Married= st.selectbox("Married",('Yes','No'))
36
+ if Married == 'Yes':
37
+ Married = 1
38
+ else:
39
+ Married = 0
40
+ BankCustomer= st.number_input("Bank Customer")
41
+ Industry= st.text_input("Industry")
42
+ Industry = transform([Industry])
43
+ Ethnicity= st.text_input("Ethnicity")
44
+ Ethnicity = transform([Ethnicity])
45
+ YearsEmployed = st.number_input("Years Employed")
46
+ PriorDefault= st.selectbox("Prior Default",('Yes','No'))
47
+ if PriorDefault == 'Yes':
48
+ PriorDefault = 1
49
+ else:
50
+ PriorDefault = 0
51
+ Employed= st.selectbox("Employed",('Yes','No'))
52
+ if Employed == 'Yes':
53
+ Employed = 1
54
+ else:
55
+ Employed = 0
56
+ CreditScore = st.number_input("Credit Score")
57
+ DriversLicense= st.selectbox("Drivers License",('Yes','No'))
58
+ if DriversLicense == 'Yes':
59
+ DriversLicense = 1
60
+ else:
61
+ DriversLicense = 0
62
+ Citizen= st.selectbox("Citizen",('ByBirth','ByOtherMeans'))
63
+ if Citizen == 'ByBirth':
64
+ Citizen = 1
65
+ else:
66
+ Citizen = 0
67
+ ZipCode= st.number_input("ZipCode")
68
+ Income= st.number_input("Income")
69
+
70
+ # Create a feature list from the user inputs
71
+ features = [[Gender, Age,Debt,Married,BankCustomer,Industry,Ethnicity,YearsEmployed,PriorDefault,Employed,CreditScore,DriversLicense,Citizen,ZipCode,Income]]
72
+
73
+ # Load the model
74
+ model = load_model()
75
+
76
+ # Make a prediction when the user clicks the "Predict" button
77
+ if st.button('Predict Status'):
78
+ predicted_value = model_prediction(model, features)
79
+ if(predicted_value==1):
80
+ st.success(f"The credit card is approved")
81
+
82
+ else:
83
+ st.success(f"The credit card is not approved")
84
+
85
+
86
+
87
+
88
+ def main():
89
+
90
+ # Set the app title and add your website name and logo
91
+ st.set_page_config(
92
+ page_title="Credit Card Classification Model",
93
+ page_icon=":chart_with_upwards_trend:",
94
+ )
95
+
96
+
97
+ st.title("Welcome to our Credit Card Classification Model!")
98
+ app_design()
99
+
100
+
101
+ if __name__ == '__main__':
102
+ main()