AjiNiktech commited on
Commit
3c557d9
·
verified ·
1 Parent(s): 95f8996

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -13
app.py CHANGED
@@ -9,7 +9,6 @@ from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
9
  from langchain_core.messages import HumanMessage, AIMessage
10
  from langchain.memory import ConversationBufferMemory
11
  from langchain.document_loaders import PyPDFLoader
12
- from fuzzywuzzy import process
13
 
14
  # Set page config
15
  st.set_page_config(page_title="Tbank Assistant", layout="wide")
@@ -91,13 +90,13 @@ if "OPENAI_API_KEY" in os.environ:
91
 
92
  document_chain = create_stuff_documents_chain(chat, question_answering_prompt)
93
 
94
- important_terms = ["Tbank", "Chairman", "CEO", "products", "services"] # Add more terms as needed
95
 
96
- return retriever, document_chain, important_terms
97
 
98
  # Load components
99
  with st.spinner("Initializing Tbank Assistant..."):
100
- retriever, document_chain, important_terms = initialize_components()
101
 
102
  # Initialize memory for each session
103
  if "memory" not in st.session_state:
@@ -115,11 +114,6 @@ if "OPENAI_API_KEY" in os.environ:
115
  with st.chat_message(message["role"]):
116
  st.markdown(message["content"])
117
 
118
- def fuzzy_match(query, choices, threshold=80):
119
- result = process.extractOne(query, choices)
120
- if result and result[1] >= threshold:
121
- return result[0]
122
- return None
123
 
124
  # React to user input
125
  if prompt := st.chat_input("What would you like to know about Tbank?"):
@@ -131,10 +125,10 @@ if "OPENAI_API_KEY" in os.environ:
131
  with st.chat_message("assistant"):
132
  message_placeholder = st.empty()
133
 
134
- # Fuzzy match important terms
135
- matched_term = fuzzy_match(prompt.lower(), important_terms)
136
- if matched_term:
137
- prompt = f"{prompt} (Matched term: {matched_term})"
138
 
139
  # Retrieve relevant documents
140
  docs = retriever.get_relevant_documents(prompt)
 
9
  from langchain_core.messages import HumanMessage, AIMessage
10
  from langchain.memory import ConversationBufferMemory
11
  from langchain.document_loaders import PyPDFLoader
 
12
 
13
  # Set page config
14
  st.set_page_config(page_title="Tbank Assistant", layout="wide")
 
90
 
91
  document_chain = create_stuff_documents_chain(chat, question_answering_prompt)
92
 
93
+
94
 
95
+ return retriever, document_chain
96
 
97
  # Load components
98
  with st.spinner("Initializing Tbank Assistant..."):
99
+ retriever, document_chain = initialize_components()
100
 
101
  # Initialize memory for each session
102
  if "memory" not in st.session_state:
 
114
  with st.chat_message(message["role"]):
115
  st.markdown(message["content"])
116
 
 
 
 
 
 
117
 
118
  # React to user input
119
  if prompt := st.chat_input("What would you like to know about Tbank?"):
 
125
  with st.chat_message("assistant"):
126
  message_placeholder = st.empty()
127
 
128
+ # # Fuzzy match important terms
129
+ # matched_term = fuzzy_match(prompt.lower(), important_terms)
130
+ # if matched_term:
131
+ # prompt = f"{prompt} (Matched term: {matched_term})"
132
 
133
  # Retrieve relevant documents
134
  docs = retriever.get_relevant_documents(prompt)