Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import pydeck as pdk | |
import plotly.express as px | |
DATE_TIME = "date/time" | |
DATA_URL = ( | |
"Motor_Vehicle_Collisions_-_Crashes.csv" | |
) | |
st.title(" Motor Vehicle Collisions in New York City ") | |
st.markdown("This application is a Streamlit dashboard that can be used " | |
"to analyze motor vehicle collisions in NYC π½π₯π") | |
def load_data(nrows): | |
data = pd.read_csv(DATA_URL, nrows=nrows, parse_dates=[['CRASH_DATE', 'CRASH_TIME']]) | |
data.dropna(subset=['LATITUDE', 'LONGITUDE'], inplace=True) | |
lowercase = lambda x: str(x).lower() | |
data.rename(lowercase, axis="columns", inplace=True) | |
data.rename(columns={"crash_date_crash_time": "date/time"}, inplace=True) | |
#data = data[['date/time', 'latitude', 'longitude']] | |
return data | |
data = load_data(100000) | |
st.header("Where are the most people injured in NYC?") | |
injured_people = st.slider("Number of persons injured in vehicle collisions", 0, 19) | |
st.map(data.query("injured_persons >= @injured_people")[["latitude", "longitude"]].dropna(how="any")) | |
st.header("How many collisions occur during a given time of day?") | |
hour = st.slider("Hour to look at", 0, 23) | |
original_data = data | |
data = data[data[DATE_TIME].dt.hour == hour] | |
st.markdown("Vehicle collisions between %i:00 and %i:00" % (hour, (hour + 1) % 24)) | |
midpoint = (np.average(data["latitude"]), np.average(data["longitude"])) | |
st.write(pdk.Deck( | |
map_style="mapbox://styles/mapbox/light-v9", | |
initial_view_state={ | |
"latitude": midpoint[0], | |
"longitude": midpoint[1], | |
"zoom": 11, | |
"pitch": 50, | |
}, | |
layers=[ | |
pdk.Layer( | |
"HexagonLayer", | |
data=data[['date/time', 'latitude', 'longitude']], | |
get_position=["longitude", "latitude"], | |
auto_highlight=True, | |
radius=100, | |
extruded=True, | |
pickable=True, | |
elevation_scale=4, | |
elevation_range=[0, 1000], | |
), | |
], | |
)) | |
if st.checkbox("Show raw data", False): | |
st.subheader("Raw data by minute between %i:00 and %i:00" % (hour, (hour + 1) % 24)) | |
st.write(data) | |
st.subheader("Breakdown by minute between %i:00 and %i:00" % (hour, (hour + 1) % 24)) | |
filtered = data[ | |
(data[DATE_TIME].dt.hour >= hour) & (data[DATE_TIME].dt.hour < (hour + 1)) | |
] | |
hist = np.histogram(filtered[DATE_TIME].dt.minute, bins=60, range=(0, 60))[0] | |
chart_data = pd.DataFrame({"minute": range(60), "crashes": hist}) | |
fig = px.bar(chart_data, x='minute', y='crashes', hover_data=['minute', 'crashes'], height=400) | |
st.write(fig) | |
st.header("Top 5 dangerous streets by affected class") | |
select = st.selectbox('Affected class', ['Pedestrians', 'Cyclists', 'Motorists']) | |
if select == 'Pedestrians': | |
st.write(original_data.query("injured_pedestrians >= 1")[["on_street_name", "injured_pedestrians"]].sort_values(by=['injured_pedestrians'], ascending=False).dropna(how="any")[:5]) | |
elif select == 'Cyclists': | |
st.write(original_data.query("injured_cyclists >= 1")[["on_street_name", "injured_cyclists"]].sort_values(by=['injured_cyclists'], ascending=False).dropna(how="any")[:5]) | |
else: | |
st.write(original_data.query("injured_motorists >= 1")[["on_street_name", "injured_motorists"]].sort_values(by=['injured_motorists'], ascending=False).dropna(how="any")[:5]) | |