|
from transformers import pipeline |
|
import gradio as gr |
|
|
|
get_completion = pipeline("ner", model="dslim/bert-base-NER") |
|
|
|
def merge_tokens(tokens): |
|
merged_tokens = [] |
|
for token in tokens: |
|
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]): |
|
|
|
last_token = merged_tokens[-1] |
|
last_token['word'] += token['word'].replace('##', '') |
|
last_token['end'] = token['end'] |
|
last_token['score'] = (last_token['score'] + token['score']) / 2 |
|
else: |
|
|
|
merged_tokens.append(token) |
|
|
|
return merged_tokens |
|
|
|
def ner(input): |
|
output = get_completion(input) |
|
merged_tokens = merge_tokens(output) |
|
return {"text": input, "entities": merged_tokens} |
|
|
|
gr.close_all() |
|
demo = gr.Interface(fn=ner, |
|
inputs=[gr.Textbox(label="Text to find entities", lines=2)], |
|
outputs=[gr.HighlightedText(label="Text with entities")], |
|
title="NER with dslim/bert-base-NER", |
|
description="Find entities using the `dslim/bert-base-NER` model under the hood!", |
|
allow_flagging="never", |
|
examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace"]) |
|
|
|
demo.launch(inline=False) |