Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1087,6 +1087,45 @@ if analysis_option == 'Machine Learning':
|
|
1087 |
|
1088 |
|
1089 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1090 |
|
1091 |
|
1092 |
|
@@ -1140,6 +1179,9 @@ if analysis_option == 'Data':
|
|
1140 |
col6 = st.columns(1)[0]
|
1141 |
fig_man = scatter_man(data)
|
1142 |
col6.plotly_chart(fig_man, use_container_width=True)
|
|
|
|
|
|
|
1143 |
|
1144 |
st.dataframe(data.head(20).style.format({'PatientID': "{:.0f}"}))
|
1145 |
|
@@ -1197,6 +1239,9 @@ if analysis_option == 'EDA':
|
|
1197 |
col12, col13 = st.columns(2)
|
1198 |
fig10 = chart_11(health_data)
|
1199 |
col12.plotly_chart(fig10, use_container_width=True)
|
|
|
|
|
|
|
1200 |
|
1201 |
st.dataframe(health_data.head(20).style.format({'PatientID': "{:.0f}"}))
|
1202 |
|
|
|
1087 |
|
1088 |
|
1089 |
|
1090 |
+
def word_cloud(data):
|
1091 |
+
no_nan = data.dropna(subset=['ImmunizationName'])
|
1092 |
+
immu = list(no_nan['ImmunizationName'])
|
1093 |
+
filtered_data = [item for item in immu if item and not pd.isna(item)]
|
1094 |
+
unique_values = set(filtered_data)
|
1095 |
+
my_string = ' '.join(unique_values)
|
1096 |
+
lmao = my_string.strip(', ')
|
1097 |
+
lmao = lmao.replace(',', '')
|
1098 |
+
|
1099 |
+
cloud = WordCloud(
|
1100 |
+
scale=3,
|
1101 |
+
max_words=150,
|
1102 |
+
colormap='RdYlGn',
|
1103 |
+
mask=None,
|
1104 |
+
background_color='white',
|
1105 |
+
stopwords=None,
|
1106 |
+
collocations=True,
|
1107 |
+
contour_color='black',
|
1108 |
+
contour_width=1
|
1109 |
+
).generate(lmao)
|
1110 |
+
|
1111 |
+
# Create a Matplotlib figure
|
1112 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
1113 |
+
ax.imshow(cloud, interpolation='bilinear')
|
1114 |
+
ax.axis('off') # Remove the axes
|
1115 |
+
ax.set_title('Immunization Word Cloud', color='black', fontsize=20)
|
1116 |
+
|
1117 |
+
# Return the figure to be used in Streamlit
|
1118 |
+
return fig
|
1119 |
+
|
1120 |
+
def more_scatter(data):
|
1121 |
+
component_icd_counts = data.groupby(['ComponentName', 'GroupedICD','Description']).size().reset_index(name='Count')
|
1122 |
+
component_icd_counts = component_icd_counts[component_icd_counts['Count']> 900]
|
1123 |
+
import plotly.express as px
|
1124 |
+
# Scatter plot
|
1125 |
+
fig16 = px.scatter(component_icd_counts, y='ComponentName', x='Description', size='Count',
|
1126 |
+
hover_name='ComponentName', color='Count', title='Lab Component-ICD Relationship',color_continuous_scale='YlOrBr')
|
1127 |
+
fig16.update_layout(template="plotly_dark",xaxis_title='ICD Code', yaxis_title='Component Name', coloraxis_colorbar=dict(title='Count'))
|
1128 |
+
return fig16
|
1129 |
|
1130 |
|
1131 |
|
|
|
1179 |
col6 = st.columns(1)[0]
|
1180 |
fig_man = scatter_man(data)
|
1181 |
col6.plotly_chart(fig_man, use_container_width=True)
|
1182 |
+
fig16 = more_scatter(data)
|
1183 |
+
col8 = st.columns(1)[0]
|
1184 |
+
col8.plotly_chart(fig16, use_container_width=True)
|
1185 |
|
1186 |
st.dataframe(data.head(20).style.format({'PatientID': "{:.0f}"}))
|
1187 |
|
|
|
1239 |
col12, col13 = st.columns(2)
|
1240 |
fig10 = chart_11(health_data)
|
1241 |
col12.plotly_chart(fig10, use_container_width=True)
|
1242 |
+
|
1243 |
+
fig11 = word_cloud(health_data)
|
1244 |
+
col13.pyplot(fig11, use_container_width=True)
|
1245 |
|
1246 |
st.dataframe(health_data.head(20).style.format({'PatientID': "{:.0f}"}))
|
1247 |
|