Akankshg commited on
Commit
e962c03
·
verified ·
1 Parent(s): 01940b1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -1
app.py CHANGED
@@ -452,6 +452,7 @@ def chart_11(disease_data):
452
 
453
 
454
  def chart_12(filtered_data):
 
455
  graph_10 = filtered_data.copy()
456
  no_nan = graph_10.dropna(subset=['ImmunizationName'])
457
  immu = list(no_nan['ImmunizationName'])
@@ -931,7 +932,7 @@ def ML(filtered_data, scaler, unscaled_data):
931
  pca_df = pca.fit_transform(original_data[numerical_columns])
932
  d = list(original_data[numerical_columns].columns)
933
  pca_df = pd.DataFrame(pca_df, columns=d[:4])
934
-
935
  import plotly.graph_objects as go
936
 
937
  st.subheader("PCA")
@@ -996,6 +997,7 @@ def imputer(filtered_data):
996
  Ml_data = Ml_data.drop(columns=columns_drop)
997
  Ml_data = pd.concat([Ml_data, scaled_data], axis=1)
998
  Ml_data = Ml_data.convert_dtypes() # change this to outlier_removed if you want outliwer to be removed
 
999
  return ML(Ml_data, scaler, unscaled_data)
1000
 
1001
 
@@ -1054,6 +1056,7 @@ if analysis_option == 'Machine Learning':
1054
  filtered_data = filtered_data[required_columns].copy()
1055
  filtered_data = filtered_data.drop_duplicates().reset_index(drop=True)
1056
  filtered_data = filtered_data.dropna(axis=1, how='all')
 
1057
  imputer(filtered_data)
1058
 
1059
 
 
452
 
453
 
454
  def chart_12(filtered_data):
455
+ st.write("4")
456
  graph_10 = filtered_data.copy()
457
  no_nan = graph_10.dropna(subset=['ImmunizationName'])
458
  immu = list(no_nan['ImmunizationName'])
 
932
  pca_df = pca.fit_transform(original_data[numerical_columns])
933
  d = list(original_data[numerical_columns].columns)
934
  pca_df = pd.DataFrame(pca_df, columns=d[:4])
935
+ st.write("3")
936
  import plotly.graph_objects as go
937
 
938
  st.subheader("PCA")
 
997
  Ml_data = Ml_data.drop(columns=columns_drop)
998
  Ml_data = pd.concat([Ml_data, scaled_data], axis=1)
999
  Ml_data = Ml_data.convert_dtypes() # change this to outlier_removed if you want outliwer to be removed
1000
+ st.write("2")
1001
  return ML(Ml_data, scaler, unscaled_data)
1002
 
1003
 
 
1056
  filtered_data = filtered_data[required_columns].copy()
1057
  filtered_data = filtered_data.drop_duplicates().reset_index(drop=True)
1058
  filtered_data = filtered_data.dropna(axis=1, how='all')
1059
+ st.write("1")
1060
  imputer(filtered_data)
1061
 
1062