Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -452,6 +452,7 @@ def chart_11(disease_data):
|
|
452 |
|
453 |
|
454 |
def chart_12(filtered_data):
|
|
|
455 |
graph_10 = filtered_data.copy()
|
456 |
no_nan = graph_10.dropna(subset=['ImmunizationName'])
|
457 |
immu = list(no_nan['ImmunizationName'])
|
@@ -931,7 +932,7 @@ def ML(filtered_data, scaler, unscaled_data):
|
|
931 |
pca_df = pca.fit_transform(original_data[numerical_columns])
|
932 |
d = list(original_data[numerical_columns].columns)
|
933 |
pca_df = pd.DataFrame(pca_df, columns=d[:4])
|
934 |
-
|
935 |
import plotly.graph_objects as go
|
936 |
|
937 |
st.subheader("PCA")
|
@@ -996,6 +997,7 @@ def imputer(filtered_data):
|
|
996 |
Ml_data = Ml_data.drop(columns=columns_drop)
|
997 |
Ml_data = pd.concat([Ml_data, scaled_data], axis=1)
|
998 |
Ml_data = Ml_data.convert_dtypes() # change this to outlier_removed if you want outliwer to be removed
|
|
|
999 |
return ML(Ml_data, scaler, unscaled_data)
|
1000 |
|
1001 |
|
@@ -1054,6 +1056,7 @@ if analysis_option == 'Machine Learning':
|
|
1054 |
filtered_data = filtered_data[required_columns].copy()
|
1055 |
filtered_data = filtered_data.drop_duplicates().reset_index(drop=True)
|
1056 |
filtered_data = filtered_data.dropna(axis=1, how='all')
|
|
|
1057 |
imputer(filtered_data)
|
1058 |
|
1059 |
|
|
|
452 |
|
453 |
|
454 |
def chart_12(filtered_data):
|
455 |
+
st.write("4")
|
456 |
graph_10 = filtered_data.copy()
|
457 |
no_nan = graph_10.dropna(subset=['ImmunizationName'])
|
458 |
immu = list(no_nan['ImmunizationName'])
|
|
|
932 |
pca_df = pca.fit_transform(original_data[numerical_columns])
|
933 |
d = list(original_data[numerical_columns].columns)
|
934 |
pca_df = pd.DataFrame(pca_df, columns=d[:4])
|
935 |
+
st.write("3")
|
936 |
import plotly.graph_objects as go
|
937 |
|
938 |
st.subheader("PCA")
|
|
|
997 |
Ml_data = Ml_data.drop(columns=columns_drop)
|
998 |
Ml_data = pd.concat([Ml_data, scaled_data], axis=1)
|
999 |
Ml_data = Ml_data.convert_dtypes() # change this to outlier_removed if you want outliwer to be removed
|
1000 |
+
st.write("2")
|
1001 |
return ML(Ml_data, scaler, unscaled_data)
|
1002 |
|
1003 |
|
|
|
1056 |
filtered_data = filtered_data[required_columns].copy()
|
1057 |
filtered_data = filtered_data.drop_duplicates().reset_index(drop=True)
|
1058 |
filtered_data = filtered_data.dropna(axis=1, how='all')
|
1059 |
+
st.write("1")
|
1060 |
imputer(filtered_data)
|
1061 |
|
1062 |
|