space_turtle / app.py
Akash190104's picture
anonymity
dba7867
raw
history blame
5.96 kB
import streamlit as st
import random
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from huggingface_hub import login, whoami
st.title("Space Turtle 101 Demo")
st.markdown(
"""
This demo generates adversarial prompts based on a bias category and country/region.
The base model is gated.
"""
)
# -------------------------------
# Retrieve HF Token from secrets or user input
# -------------------------------
if "HF_TOKEN" in st.secrets:
hf_token = st.secrets["HF_TOKEN"]
st.sidebar.info("Using token from secrets.")
else:
hf_token = st.sidebar.text_input("Enter your Hugging Face API Token", type="password")
# -------------------------------
# Login if token is provided
# -------------------------------
if hf_token:
try:
login(token=hf_token)
user_info = whoami()
st.sidebar.success(f"Logged in as: {user_info['name']}")
except Exception as e:
st.sidebar.error(f"Login failed: {e}")
hf_token = None
else:
st.sidebar.warning("Please enter your Hugging Face API Token.")
# -------------------------------
# Device Selection: CUDA > MPS > CPU
# -------------------------------
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
# -------------------------------
# Function: Load Model with Caching
# -------------------------------
@st.cache_resource(show_spinner=True)
def load_model(hf_token):
device = get_device()
# Load the gated base model with your token
base_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.2-1B-Instruct",
trust_remote_code=True,
torch_dtype=torch.float16,
use_auth_token=hf_token
)
# Load the tokenizer from your adapter repository and set pad token if needed
tokenizer = AutoTokenizer.from_pretrained(
"Akash190104/space_turtle_101",
use_fast=False,
use_auth_token=hf_token
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load the LoRA adapter using your token
model = PeftModel.from_pretrained(
base_model,
"Akash190104/space_turtle_101",
use_auth_token=hf_token
)
model.to(device)
return model, tokenizer, device
if not hf_token:
st.warning("Please enter your Hugging Face API Token to load the model.")
else:
with st.spinner("Loading model, please wait..."):
try:
model, tokenizer, device = load_model(hf_token)
st.success("Model loaded successfully!")
except Exception as e:
st.error(f"Model loading failed: {e}")
st.error("Ensure your token has access to meta-llama/Llama-3.2-1B-Instruct.")
st.stop()
# -------------------------------
# Generation helper function
# -------------------------------
def generate_sample(prompt_text):
inputs = tokenizer(prompt_text, return_tensors="pt", padding=True).to(device)
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_p=0.9
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
# -------------------------------
# Define bias and country lists
# -------------------------------
biases = [
"Socio-economic bias", "Gender bias", "Caste bias", "Religious bias", "Ethnic bias", "Age bias",
"Regional stereotyping", "Language discrimination", "Political bias", "Educational bias",
"Occupational bias", "Disability bias", "Appearance-based bias", "Colorism", "Nationality bias",
"Urban-rural bias", "Immigration bias"
]
countries = [
"China", "India", "Philippines", "Vietnam", "Southeast Asia", "Europe", "Nigeria", "United States",
"Mexico", "Canada", "Germany", "France", "Brazil", "South Africa", "Russia", "Japan", "South Korea",
"Australia", "Middle East", "Latin America", "Eastern Europe", "Bangladesh", "Pakistan", "Indonesia",
"Turkey", "Egypt", "Kenya", "Argentina"
]
# -------------------------------
# Streamlit UI: Demo Modes
# -------------------------------
mode = st.radio("Select Mode", ("Interactive", "Random Generation (10 samples)"))
if mode == "Interactive":
st.subheader("Interactive Mode")
bias_input = st.text_input("Bias Category", "")
country_input = st.text_input("Country/Region", "")
if st.button("Generate Sample"):
if bias_input.strip() == "" or country_input.strip() == "":
st.error("Please provide both a bias category and a country/region.")
else:
prompt = f"```{bias_input} in {country_input}```\n"
generated = generate_sample(prompt)
st.markdown("**Generated Output:**")
st.text_area("", value=generated, height=200)
st.download_button("Download Output", generated, file_name="output.txt")
elif mode == "Random Generation (10 samples)":
st.subheader("Random Generation Mode")
if st.button("Generate 10 Random Samples"):
results = []
for _ in range(10):
bias = random.choice(biases)
country = random.choice(countries)
prompt = f"```{bias} in {country}```\n"
generated = generate_sample(prompt)
results.append({"prompt": prompt, "generated": generated})
for i, res in enumerate(results):
st.markdown(f"**Sample {i+1}:**")
st.text_area("Prompt", value=res["prompt"], height=50)
st.text_area("Output", value=res["generated"], height=150)
df = pd.DataFrame(results)
csv = df.to_csv(index=False).encode("utf-8")
st.download_button("Download All Samples (CSV)", csv, file_name="samples.csv", mime="text/csv")