Spaces:
Sleeping
Sleeping
Commit
·
aa0eeb0
1
Parent(s):
360a42b
fixing the login error
Browse files
app.py
CHANGED
@@ -4,109 +4,143 @@ import pandas as pd
|
|
4 |
import torch
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
from peft import PeftModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# -------------------------------
|
9 |
-
#
|
10 |
# -------------------------------
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
if torch.cuda.is_available():
|
15 |
-
|
16 |
elif torch.backends.mps.is_available():
|
17 |
-
|
18 |
else:
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
base_model = AutoModelForCausalLM.from_pretrained(
|
23 |
"meta-llama/Llama-3.2-1B-Instruct",
|
24 |
trust_remote_code=True,
|
25 |
-
torch_dtype=torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
-
|
28 |
-
# Load tokenizer from your adapter repo and set pad token if needed
|
29 |
-
tokenizer = AutoTokenizer.from_pretrained("Akash190104/space_turtle_101", use_fast=False)
|
30 |
if tokenizer.pad_token is None:
|
31 |
tokenizer.pad_token = tokenizer.eos_token
|
32 |
|
33 |
-
# Load the LoRA adapter
|
34 |
-
model = PeftModel.from_pretrained(
|
|
|
|
|
|
|
|
|
35 |
model.to(device)
|
36 |
-
|
37 |
return model, tokenizer, device
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
def generate_sample(prompt_text):
|
46 |
-
inputs = tokenizer(prompt_text, return_tensors="pt", padding=True).to(device)
|
47 |
-
with torch.inference_mode():
|
48 |
-
outputs = model.generate(
|
49 |
-
**inputs,
|
50 |
-
max_new_tokens=150,
|
51 |
-
do_sample=True,
|
52 |
-
temperature=0.7,
|
53 |
-
top_p=0.9
|
54 |
-
)
|
55 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
56 |
-
return generated_text
|
57 |
-
|
58 |
-
# -------------------------------
|
59 |
-
# Define bias and country lists
|
60 |
-
# -------------------------------
|
61 |
-
biases = [
|
62 |
-
"Socio-economic bias", "Gender bias", "Caste bias", "Religious bias", "Ethnic bias", "Age bias",
|
63 |
-
"Regional stereotyping", "Language discrimination", "Political bias", "Educational bias",
|
64 |
-
"Occupational bias", "Disability bias", "Appearance-based bias", "Colorism", "Nationality bias",
|
65 |
-
"Urban-rural bias", "Immigration bias"
|
66 |
-
]
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
# -------------------------------
|
76 |
-
#
|
77 |
-
# -------------------------------
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
|
|
|
|
|
|
82 |
|
83 |
-
if mode == "Interactive":
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
elif mode == "Random Generation (10 samples)":
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
4 |
import torch
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
from peft import PeftModel
|
7 |
+
from huggingface_hub import login, whoami
|
8 |
+
|
9 |
+
# Title and description
|
10 |
+
st.title("Space Turtle 101 Demo")
|
11 |
+
st.markdown(
|
12 |
+
"""
|
13 |
+
This demo generates adversarial prompts based on a bias category and country/region.
|
14 |
+
The model (meta-llama/Llama-3.2-1B-Instruct) is gated. Please enter your Hugging Face API token below to access it.
|
15 |
+
"""
|
16 |
+
)
|
17 |
|
18 |
# -------------------------------
|
19 |
+
# Sidebar: Hugging Face API Token Input & Auto Login
|
20 |
# -------------------------------
|
21 |
+
hf_token = st.sidebar.text_input("Enter your Hugging Face API Token", type="password")
|
22 |
+
if hf_token:
|
23 |
+
try:
|
24 |
+
login(token=hf_token)
|
25 |
+
user_info = whoami()
|
26 |
+
st.sidebar.success(f"Logged in as: {user_info['name']}")
|
27 |
+
except Exception as e:
|
28 |
+
st.sidebar.error(f"Login failed: {e}")
|
29 |
+
hf_token = None
|
30 |
+
|
31 |
+
# -------------------------------
|
32 |
+
# Device Selection: CUDA > MPS > CPU
|
33 |
+
# -------------------------------
|
34 |
+
def get_device():
|
35 |
if torch.cuda.is_available():
|
36 |
+
return "cuda"
|
37 |
elif torch.backends.mps.is_available():
|
38 |
+
return "mps"
|
39 |
else:
|
40 |
+
return "cpu"
|
41 |
+
|
42 |
+
# -------------------------------
|
43 |
+
# Function: Load Model with Caching
|
44 |
+
# -------------------------------
|
45 |
+
@st.cache_resource(show_spinner=True)
|
46 |
+
def load_model(hf_token):
|
47 |
+
device = get_device()
|
48 |
+
# Load the gated base model with your token
|
49 |
base_model = AutoModelForCausalLM.from_pretrained(
|
50 |
"meta-llama/Llama-3.2-1B-Instruct",
|
51 |
trust_remote_code=True,
|
52 |
+
torch_dtype=torch.float16,
|
53 |
+
use_auth_token=hf_token
|
54 |
+
)
|
55 |
+
# Load the tokenizer from your adapter repo and set the pad token
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
57 |
+
"Akash190104/space_turtle_101",
|
58 |
+
use_fast=False,
|
59 |
+
use_auth_token=hf_token
|
60 |
)
|
|
|
|
|
|
|
61 |
if tokenizer.pad_token is None:
|
62 |
tokenizer.pad_token = tokenizer.eos_token
|
63 |
|
64 |
+
# Load the LoRA adapter with the token
|
65 |
+
model = PeftModel.from_pretrained(
|
66 |
+
base_model,
|
67 |
+
"Akash190104/space_turtle_101",
|
68 |
+
use_auth_token=hf_token
|
69 |
+
)
|
70 |
model.to(device)
|
|
|
71 |
return model, tokenizer, device
|
72 |
|
73 |
+
if not hf_token:
|
74 |
+
st.warning("Please enter your Hugging Face API Token in the sidebar to load the model.")
|
75 |
+
else:
|
76 |
+
with st.spinner("Loading model, please wait..."):
|
77 |
+
model, tokenizer, device = load_model(hf_token)
|
78 |
+
st.success("Model loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# -------------------------------
|
81 |
+
# Generation helper function
|
82 |
+
# -------------------------------
|
83 |
+
def generate_sample(prompt_text):
|
84 |
+
inputs = tokenizer(prompt_text, return_tensors="pt", padding=True).to(device)
|
85 |
+
with torch.inference_mode():
|
86 |
+
outputs = model.generate(
|
87 |
+
**inputs,
|
88 |
+
max_new_tokens=150,
|
89 |
+
do_sample=True,
|
90 |
+
temperature=0.7,
|
91 |
+
top_p=0.9
|
92 |
+
)
|
93 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
94 |
+
return generated_text
|
95 |
|
96 |
+
# -------------------------------
|
97 |
+
# Define bias and country lists
|
98 |
+
# -------------------------------
|
99 |
+
biases = [
|
100 |
+
"Socio-economic bias", "Gender bias", "Caste bias", "Religious bias", "Ethnic bias", "Age bias",
|
101 |
+
"Regional stereotyping", "Language discrimination", "Political bias", "Educational bias",
|
102 |
+
"Occupational bias", "Disability bias", "Appearance-based bias", "Colorism", "Nationality bias",
|
103 |
+
"Urban-rural bias", "Immigration bias"
|
104 |
+
]
|
105 |
+
countries = [
|
106 |
+
"China", "India", "Philippines", "Vietnam", "Southeast Asia", "Europe", "Nigeria", "United States",
|
107 |
+
"Mexico", "Canada", "Germany", "France", "Brazil", "South Africa", "Russia", "Japan", "South Korea",
|
108 |
+
"Australia", "Middle East", "Latin America", "Eastern Europe", "Bangladesh", "Pakistan", "Indonesia",
|
109 |
+
"Turkey", "Egypt", "Kenya", "Argentina"
|
110 |
+
]
|
111 |
|
112 |
+
# -------------------------------
|
113 |
+
# Streamlit UI: Demo Modes
|
114 |
+
# -------------------------------
|
115 |
+
mode = st.radio("Select Mode", ("Interactive", "Random Generation (10 samples)"))
|
116 |
|
117 |
+
if mode == "Interactive":
|
118 |
+
st.subheader("Interactive Mode")
|
119 |
+
bias_input = st.text_input("Bias Category", "")
|
120 |
+
country_input = st.text_input("Country/Region", "")
|
121 |
+
if st.button("Generate Sample"):
|
122 |
+
if bias_input.strip() == "" or country_input.strip() == "":
|
123 |
+
st.error("Please provide both a bias category and a country/region.")
|
124 |
+
else:
|
125 |
+
prompt = f"```{bias_input} in {country_input}```\n"
|
126 |
+
generated = generate_sample(prompt)
|
127 |
+
st.markdown("**Generated Output:**")
|
128 |
+
st.text_area("", value=generated, height=200)
|
129 |
+
st.download_button("Download Output", generated, file_name="output.txt")
|
130 |
+
elif mode == "Random Generation (10 samples)":
|
131 |
+
st.subheader("Random Generation Mode")
|
132 |
+
if st.button("Generate 10 Random Samples"):
|
133 |
+
results = []
|
134 |
+
for _ in range(10):
|
135 |
+
bias = random.choice(biases)
|
136 |
+
country = random.choice(countries)
|
137 |
+
prompt = f"```{bias} in {country}```\n"
|
138 |
+
generated = generate_sample(prompt)
|
139 |
+
results.append({"prompt": prompt, "generated": generated})
|
140 |
+
for i, res in enumerate(results):
|
141 |
+
st.markdown(f"**Sample {i+1}:**")
|
142 |
+
st.text_area("Prompt", value=res["prompt"], height=50)
|
143 |
+
st.text_area("Output", value=res["generated"], height=150)
|
144 |
+
df = pd.DataFrame(results)
|
145 |
+
csv = df.to_csv(index=False).encode("utf-8")
|
146 |
+
st.download_button("Download All Samples (CSV)", csv, file_name="samples.csv", mime="text/csv")
|