AkashDataScience commited on
Commit
d5beaef
·
1 Parent(s): 87577d6

Added phi-3 model

Browse files
Files changed (1) hide show
  1. app.py +27 -1
app.py CHANGED
@@ -1,7 +1,33 @@
 
1
  import random
2
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  def infer(message, history):
5
- return random.choice(["Yes", "No"])
 
 
6
 
7
  gr.ChatInterface(infer).launch()
 
1
+ import torch
2
  import random
3
  import gradio as gr
4
+ from peft import PeftModel
5
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
6
+
7
+ checkpoint_path = "microsoft/Phi-3-mini-4k-instruct"
8
+ model_kwargs = dict(
9
+ use_cache=False,
10
+ trust_remote_code=True,
11
+ attn_implementation='eager', # loading the model with flash-attenstion support
12
+ torch_dtype=torch.bfloat16,
13
+ device_map=None
14
+ )
15
+ base_model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
16
+
17
+ new_model = "/content/checkpoint_dir/checkpoint-100" # change to the path where your model is saved
18
+
19
+ model = PeftModel.from_pretrained(base_model, new_model)
20
+ model = model.merge_and_unload()
21
+
22
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True)
23
+ tokenizer.pad_token = tokenizer.eos_token
24
+ tokenizer.padding_side = "right"
25
+
26
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
27
 
28
  def infer(message, history):
29
+ prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
30
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, num_beams=1, temperature=0.3, top_k=50, top_p=0.95, max_time= 180)
31
+ return outputs[0]['generated_text'][len(prompt):].strip()
32
 
33
  gr.ChatInterface(infer).launch()