AkashDataScience commited on
Commit
10ed4f8
·
1 Parent(s): fab33c4
Files changed (1) hide show
  1. models/experimental.py +275 -0
models/experimental.py ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ from utils.downloads import attempt_download
8
+
9
+
10
+ class Sum(nn.Module):
11
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
12
+ def __init__(self, n, weight=False): # n: number of inputs
13
+ super().__init__()
14
+ self.weight = weight # apply weights boolean
15
+ self.iter = range(n - 1) # iter object
16
+ if weight:
17
+ self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
18
+
19
+ def forward(self, x):
20
+ y = x[0] # no weight
21
+ if self.weight:
22
+ w = torch.sigmoid(self.w) * 2
23
+ for i in self.iter:
24
+ y = y + x[i + 1] * w[i]
25
+ else:
26
+ for i in self.iter:
27
+ y = y + x[i + 1]
28
+ return y
29
+
30
+
31
+ class MixConv2d(nn.Module):
32
+ # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
33
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
34
+ super().__init__()
35
+ n = len(k) # number of convolutions
36
+ if equal_ch: # equal c_ per group
37
+ i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
38
+ c_ = [(i == g).sum() for g in range(n)] # intermediate channels
39
+ else: # equal weight.numel() per group
40
+ b = [c2] + [0] * n
41
+ a = np.eye(n + 1, n, k=-1)
42
+ a -= np.roll(a, 1, axis=1)
43
+ a *= np.array(k) ** 2
44
+ a[0] = 1
45
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
46
+
47
+ self.m = nn.ModuleList([
48
+ nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
49
+ self.bn = nn.BatchNorm2d(c2)
50
+ self.act = nn.SiLU()
51
+
52
+ def forward(self, x):
53
+ return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
54
+
55
+
56
+ class Ensemble(nn.ModuleList):
57
+ # Ensemble of models
58
+ def __init__(self):
59
+ super().__init__()
60
+
61
+ def forward(self, x, augment=False, profile=False, visualize=False):
62
+ y = [module(x, augment, profile, visualize)[0] for module in self]
63
+ # y = torch.stack(y).max(0)[0] # max ensemble
64
+ # y = torch.stack(y).mean(0) # mean ensemble
65
+ y = torch.cat(y, 1) # nms ensemble
66
+ return y, None # inference, train output
67
+
68
+
69
+ class ORT_NMS(torch.autograd.Function):
70
+ '''ONNX-Runtime NMS operation'''
71
+ @staticmethod
72
+ def forward(ctx,
73
+ boxes,
74
+ scores,
75
+ max_output_boxes_per_class=torch.tensor([100]),
76
+ iou_threshold=torch.tensor([0.45]),
77
+ score_threshold=torch.tensor([0.25])):
78
+ device = boxes.device
79
+ batch = scores.shape[0]
80
+ num_det = random.randint(0, 100)
81
+ batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
82
+ idxs = torch.arange(100, 100 + num_det).to(device)
83
+ zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
84
+ selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
85
+ selected_indices = selected_indices.to(torch.int64)
86
+ return selected_indices
87
+
88
+ @staticmethod
89
+ def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
90
+ return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
91
+
92
+
93
+ class TRT_NMS(torch.autograd.Function):
94
+ '''TensorRT NMS operation'''
95
+ @staticmethod
96
+ def forward(
97
+ ctx,
98
+ boxes,
99
+ scores,
100
+ background_class=-1,
101
+ box_coding=1,
102
+ iou_threshold=0.45,
103
+ max_output_boxes=100,
104
+ plugin_version="1",
105
+ score_activation=0,
106
+ score_threshold=0.25,
107
+ ):
108
+
109
+ batch_size, num_boxes, num_classes = scores.shape
110
+ num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
111
+ det_boxes = torch.randn(batch_size, max_output_boxes, 4)
112
+ det_scores = torch.randn(batch_size, max_output_boxes)
113
+ det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
114
+ return num_det, det_boxes, det_scores, det_classes
115
+
116
+ @staticmethod
117
+ def symbolic(g,
118
+ boxes,
119
+ scores,
120
+ background_class=-1,
121
+ box_coding=1,
122
+ iou_threshold=0.45,
123
+ max_output_boxes=100,
124
+ plugin_version="1",
125
+ score_activation=0,
126
+ score_threshold=0.25):
127
+ out = g.op("TRT::EfficientNMS_TRT",
128
+ boxes,
129
+ scores,
130
+ background_class_i=background_class,
131
+ box_coding_i=box_coding,
132
+ iou_threshold_f=iou_threshold,
133
+ max_output_boxes_i=max_output_boxes,
134
+ plugin_version_s=plugin_version,
135
+ score_activation_i=score_activation,
136
+ score_threshold_f=score_threshold,
137
+ outputs=4)
138
+ nums, boxes, scores, classes = out
139
+ return nums, boxes, scores, classes
140
+
141
+
142
+ class ONNX_ORT(nn.Module):
143
+ '''onnx module with ONNX-Runtime NMS operation.'''
144
+ def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None, n_classes=80):
145
+ super().__init__()
146
+ self.device = device if device else torch.device("cpu")
147
+ self.max_obj = torch.tensor([max_obj]).to(device)
148
+ self.iou_threshold = torch.tensor([iou_thres]).to(device)
149
+ self.score_threshold = torch.tensor([score_thres]).to(device)
150
+ self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
151
+ self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
152
+ dtype=torch.float32,
153
+ device=self.device)
154
+ self.n_classes=n_classes
155
+
156
+ def forward(self, x):
157
+ ## https://github.com/thaitc-hust/yolov9-tensorrt/blob/main/torch2onnx.py
158
+ ## thanks https://github.com/thaitc-hust
159
+ if isinstance(x, list): ## yolov9-c.pt and yolov9-e.pt return list
160
+ x = x[1]
161
+ x = x.permute(0, 2, 1)
162
+ bboxes_x = x[..., 0:1]
163
+ bboxes_y = x[..., 1:2]
164
+ bboxes_w = x[..., 2:3]
165
+ bboxes_h = x[..., 3:4]
166
+ bboxes = torch.cat([bboxes_x, bboxes_y, bboxes_w, bboxes_h], dim = -1)
167
+ bboxes = bboxes.unsqueeze(2) # [n_batch, n_bboxes, 4] -> [n_batch, n_bboxes, 1, 4]
168
+ obj_conf = x[..., 4:]
169
+ scores = obj_conf
170
+ bboxes @= self.convert_matrix
171
+ max_score, category_id = scores.max(2, keepdim=True)
172
+ dis = category_id.float() * self.max_wh
173
+ nmsbox = bboxes + dis
174
+ max_score_tp = max_score.transpose(1, 2).contiguous()
175
+ selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
176
+ X, Y = selected_indices[:, 0], selected_indices[:, 2]
177
+ selected_boxes = bboxes[X, Y, :]
178
+ selected_categories = category_id[X, Y, :].float()
179
+ selected_scores = max_score[X, Y, :]
180
+ X = X.unsqueeze(1).float()
181
+ return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
182
+
183
+
184
+ class ONNX_TRT(nn.Module):
185
+ '''onnx module with TensorRT NMS operation.'''
186
+ def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None, n_classes=80):
187
+ super().__init__()
188
+ assert max_wh is None
189
+ self.device = device if device else torch.device('cpu')
190
+ self.background_class = -1,
191
+ self.box_coding = 1,
192
+ self.iou_threshold = iou_thres
193
+ self.max_obj = max_obj
194
+ self.plugin_version = '1'
195
+ self.score_activation = 0
196
+ self.score_threshold = score_thres
197
+ self.n_classes=n_classes
198
+
199
+ def forward(self, x):
200
+ ## https://github.com/thaitc-hust/yolov9-tensorrt/blob/main/torch2onnx.py
201
+ ## thanks https://github.com/thaitc-hust
202
+ if isinstance(x, list): ## yolov9-c.pt and yolov9-e.pt return list
203
+ x = x[1]
204
+ x = x.permute(0, 2, 1)
205
+ bboxes_x = x[..., 0:1]
206
+ bboxes_y = x[..., 1:2]
207
+ bboxes_w = x[..., 2:3]
208
+ bboxes_h = x[..., 3:4]
209
+ bboxes = torch.cat([bboxes_x, bboxes_y, bboxes_w, bboxes_h], dim = -1)
210
+ bboxes = bboxes.unsqueeze(2) # [n_batch, n_bboxes, 4] -> [n_batch, n_bboxes, 1, 4]
211
+ obj_conf = x[..., 4:]
212
+ scores = obj_conf
213
+ num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(bboxes, scores, self.background_class, self.box_coding,
214
+ self.iou_threshold, self.max_obj,
215
+ self.plugin_version, self.score_activation,
216
+ self.score_threshold)
217
+ return num_det, det_boxes, det_scores, det_classes
218
+
219
+ class End2End(nn.Module):
220
+ '''export onnx or tensorrt model with NMS operation.'''
221
+ def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None, n_classes=80):
222
+ super().__init__()
223
+ device = device if device else torch.device('cpu')
224
+ assert isinstance(max_wh,(int)) or max_wh is None
225
+ self.model = model.to(device)
226
+ self.model.model[-1].end2end = True
227
+ self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
228
+ self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device, n_classes)
229
+ self.end2end.eval()
230
+
231
+ def forward(self, x):
232
+ x = self.model(x)
233
+ x = self.end2end(x)
234
+ return x
235
+
236
+
237
+ def attempt_load(weights, device=None, inplace=True, fuse=True):
238
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
239
+ from models.yolo import Detect, Model
240
+
241
+ model = Ensemble()
242
+ for w in weights if isinstance(weights, list) else [weights]:
243
+ ckpt = torch.load(attempt_download(w), map_location='cpu') # load
244
+ ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
245
+
246
+ # Model compatibility updates
247
+ if not hasattr(ckpt, 'stride'):
248
+ ckpt.stride = torch.tensor([32.])
249
+ if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
250
+ ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
251
+
252
+ model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
253
+
254
+ # Module compatibility updates
255
+ for m in model.modules():
256
+ t = type(m)
257
+ if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
258
+ m.inplace = inplace # torch 1.7.0 compatibility
259
+ # if t is Detect and not isinstance(m.anchor_grid, list):
260
+ # delattr(m, 'anchor_grid')
261
+ # setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
262
+ elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
263
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
264
+
265
+ # Return model
266
+ if len(model) == 1:
267
+ return model[-1]
268
+
269
+ # Return detection ensemble
270
+ print(f'Ensemble created with {weights}\n')
271
+ for k in 'names', 'nc', 'yaml':
272
+ setattr(model, k, getattr(model[0], k))
273
+ model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
274
+ assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
275
+ return model