Spaces:
Sleeping
Sleeping
Commit
·
5d43fef
1
Parent(s):
1ac603d
Updated inferencing code
Browse files
app.py
CHANGED
@@ -1,27 +1,24 @@
|
|
1 |
import os
|
2 |
import cv2
|
|
|
3 |
import math
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
import gradio as gr
|
7 |
-
import albumentations
|
8 |
import matplotlib.pyplot as plt
|
9 |
-
|
10 |
from PIL import Image
|
11 |
-
from pytorch_grad_cam import EigenCAM
|
12 |
-
from models.common import DetectMultiBackend
|
13 |
-
from albumentations.pytorch import ToTensorV2
|
14 |
-
from utils.augmentations import letterbox
|
15 |
from utils.plots import Annotator, colors
|
16 |
-
from
|
|
|
|
|
17 |
from utils.torch_utils import select_device, smart_inference_mode
|
18 |
-
from utils.general import check_img_size, Profile, non_max_suppression, scale_boxes
|
19 |
|
20 |
weights = "runs/train/best_striped.pt"
|
21 |
data = "data.yaml"
|
22 |
# Load model
|
23 |
device = select_device('cpu')
|
24 |
-
model = DetectMultiBackend(weights, device=device,
|
25 |
#target_layers = [model.model.model[-1]]
|
26 |
|
27 |
false_detection_data = glob(os.path.join("false_detection", '*.jpg'))
|
@@ -65,41 +62,32 @@ def display_false_detection_data(false_detection_data, number_of_samples):
|
|
65 |
return fig
|
66 |
|
67 |
def inference(input_img, conf_thres, iou_thres, is_false_detection_images=True, num_false_detection_images=10):
|
68 |
-
im0 = input_img.copy()
|
69 |
-
rgb_img = cv2.resize(im0, (640, 640))
|
70 |
stride, names, pt = model.stride, model.names, model.pt
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
im = torch.from_numpy(im).to(model.device)
|
83 |
-
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
84 |
-
im /= 255 # 0 - 255 to 0.0 - 1.0
|
85 |
-
if len(im.shape) == 3:
|
86 |
-
im = im[None] # expand for batch dim
|
87 |
-
|
88 |
# Inference
|
89 |
-
|
90 |
-
pred = model(im, augment=False, visualize=False)
|
91 |
|
92 |
-
# NMS
|
93 |
-
|
94 |
-
pred = non_max_suppression(pred, conf_thres, iou_thres, None, False, max_det=10)
|
95 |
|
96 |
# Process predictions
|
|
|
97 |
for i, det in enumerate(pred): # per image
|
98 |
seen += 1
|
99 |
-
annotator = Annotator(
|
100 |
if len(det):
|
101 |
# Rescale boxes from img_size to im0 size
|
102 |
-
det[:, :4] = scale_boxes(
|
103 |
|
104 |
# Write results
|
105 |
for *xyxy, conf, cls in reversed(det):
|
@@ -117,7 +105,7 @@ def inference(input_img, conf_thres, iou_thres, is_false_detection_images=True,
|
|
117 |
# grayscale_cam = cam(im)[0, :]
|
118 |
# cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
|
119 |
|
120 |
-
return
|
121 |
|
122 |
title = "YOLOv9 model to detect shirt/tshirt"
|
123 |
description = "A simple Gradio interface to infer on YOLOv9 model and detect tshirt in image"
|
|
|
1 |
import os
|
2 |
import cv2
|
3 |
+
import glob
|
4 |
import math
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
import gradio as gr
|
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
+
|
10 |
from PIL import Image
|
|
|
|
|
|
|
|
|
11 |
from utils.plots import Annotator, colors
|
12 |
+
from utils.augmentations import letterbox
|
13 |
+
from models.common import DetectMultiBackend
|
14 |
+
from utils.general import non_max_suppression, scale_boxes
|
15 |
from utils.torch_utils import select_device, smart_inference_mode
|
|
|
16 |
|
17 |
weights = "runs/train/best_striped.pt"
|
18 |
data = "data.yaml"
|
19 |
# Load model
|
20 |
device = select_device('cpu')
|
21 |
+
model = DetectMultiBackend(weights=weights, device=device, fp16=False, data=data)
|
22 |
#target_layers = [model.model.model[-1]]
|
23 |
|
24 |
false_detection_data = glob(os.path.join("false_detection", '*.jpg'))
|
|
|
62 |
return fig
|
63 |
|
64 |
def inference(input_img, conf_thres, iou_thres, is_false_detection_images=True, num_false_detection_images=10):
|
|
|
|
|
65 |
stride, names, pt = model.stride, model.names, model.pt
|
66 |
+
|
67 |
+
# Load image
|
68 |
+
img0 = input_img.copy()
|
69 |
+
img = letterbox(img0, 640, stride=stride, auto=True)[0]
|
70 |
+
img = img[:, :, ::-1].transpose(2, 0, 1)
|
71 |
+
img = np.ascontiguousarray(img)
|
72 |
+
img = torch.from_numpy(img).to(device).float()
|
73 |
+
img /= 255.0
|
74 |
+
if img.ndimension() == 3:
|
75 |
+
img = img.unsqueeze(0)
|
76 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
# Inference
|
78 |
+
pred = model(img, augment=False, visualize=False)
|
|
|
79 |
|
80 |
+
# Apply NMS
|
81 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres, classes=None, max_det=1000)
|
|
|
82 |
|
83 |
# Process predictions
|
84 |
+
seen = 0
|
85 |
for i, det in enumerate(pred): # per image
|
86 |
seen += 1
|
87 |
+
annotator = Annotator(img0, line_width=2, example=str(model.names))
|
88 |
if len(det):
|
89 |
# Rescale boxes from img_size to im0 size
|
90 |
+
det[:, :4] = scale_boxes(img.shape[2:], det[:, :4], img0.shape).round()
|
91 |
|
92 |
# Write results
|
93 |
for *xyxy, conf, cls in reversed(det):
|
|
|
105 |
# grayscale_cam = cam(im)[0, :]
|
106 |
# cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
|
107 |
|
108 |
+
return img0, misclassified_images
|
109 |
|
110 |
title = "YOLOv9 model to detect shirt/tshirt"
|
111 |
description = "A simple Gradio interface to infer on YOLOv9 model and detect tshirt in image"
|