Spaces:
Sleeping
Sleeping
Commit
·
6af5ec3
1
Parent(s):
ec32911
Minor fix
Browse files- utils/__init__.py +75 -0
- utils/dataloaders.py +1217 -0
utils/__init__.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import platform
|
3 |
+
import threading
|
4 |
+
|
5 |
+
|
6 |
+
def emojis(str=''):
|
7 |
+
# Return platform-dependent emoji-safe version of string
|
8 |
+
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
9 |
+
|
10 |
+
|
11 |
+
class TryExcept(contextlib.ContextDecorator):
|
12 |
+
# YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
|
13 |
+
def __init__(self, msg=''):
|
14 |
+
self.msg = msg
|
15 |
+
|
16 |
+
def __enter__(self):
|
17 |
+
pass
|
18 |
+
|
19 |
+
def __exit__(self, exc_type, value, traceback):
|
20 |
+
if value:
|
21 |
+
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
|
22 |
+
return True
|
23 |
+
|
24 |
+
|
25 |
+
def threaded(func):
|
26 |
+
# Multi-threads a target function and returns thread. Usage: @threaded decorator
|
27 |
+
def wrapper(*args, **kwargs):
|
28 |
+
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
|
29 |
+
thread.start()
|
30 |
+
return thread
|
31 |
+
|
32 |
+
return wrapper
|
33 |
+
|
34 |
+
|
35 |
+
def join_threads(verbose=False):
|
36 |
+
# Join all daemon threads, i.e. atexit.register(lambda: join_threads())
|
37 |
+
main_thread = threading.current_thread()
|
38 |
+
for t in threading.enumerate():
|
39 |
+
if t is not main_thread:
|
40 |
+
if verbose:
|
41 |
+
print(f'Joining thread {t.name}')
|
42 |
+
t.join()
|
43 |
+
|
44 |
+
|
45 |
+
def notebook_init(verbose=True):
|
46 |
+
# Check system software and hardware
|
47 |
+
print('Checking setup...')
|
48 |
+
|
49 |
+
import os
|
50 |
+
import shutil
|
51 |
+
|
52 |
+
from utils.general import check_font, check_requirements, is_colab
|
53 |
+
from utils.torch_utils import select_device # imports
|
54 |
+
|
55 |
+
check_font()
|
56 |
+
|
57 |
+
import psutil
|
58 |
+
from IPython import display # to display images and clear console output
|
59 |
+
|
60 |
+
if is_colab():
|
61 |
+
shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
|
62 |
+
|
63 |
+
# System info
|
64 |
+
if verbose:
|
65 |
+
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
66 |
+
ram = psutil.virtual_memory().total
|
67 |
+
total, used, free = shutil.disk_usage("/")
|
68 |
+
display.clear_output()
|
69 |
+
s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
|
70 |
+
else:
|
71 |
+
s = ''
|
72 |
+
|
73 |
+
select_device(newline=False)
|
74 |
+
print(emojis(f'Setup complete ✅ {s}'))
|
75 |
+
return display
|
utils/dataloaders.py
ADDED
@@ -0,0 +1,1217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import glob
|
3 |
+
import hashlib
|
4 |
+
import json
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
import shutil
|
9 |
+
import time
|
10 |
+
from itertools import repeat
|
11 |
+
from multiprocessing.pool import Pool, ThreadPool
|
12 |
+
from pathlib import Path
|
13 |
+
from threading import Thread
|
14 |
+
from urllib.parse import urlparse
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import psutil
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
import torchvision
|
21 |
+
import yaml
|
22 |
+
from PIL import ExifTags, Image, ImageOps
|
23 |
+
from torch.utils.data import DataLoader, Dataset, dataloader, distributed
|
24 |
+
from tqdm import tqdm
|
25 |
+
|
26 |
+
from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste,
|
27 |
+
letterbox, mixup, random_perspective)
|
28 |
+
from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, check_dataset, check_requirements,
|
29 |
+
check_yaml, clean_str, cv2, is_colab, is_kaggle, segments2boxes, unzip_file, xyn2xy,
|
30 |
+
xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
|
31 |
+
from utils.torch_utils import torch_distributed_zero_first
|
32 |
+
|
33 |
+
# Parameters
|
34 |
+
HELP_URL = 'See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
35 |
+
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # include image suffixes
|
36 |
+
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
|
37 |
+
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
38 |
+
RANK = int(os.getenv('RANK', -1))
|
39 |
+
PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders
|
40 |
+
|
41 |
+
# Get orientation exif tag
|
42 |
+
for orientation in ExifTags.TAGS.keys():
|
43 |
+
if ExifTags.TAGS[orientation] == 'Orientation':
|
44 |
+
break
|
45 |
+
|
46 |
+
|
47 |
+
def get_hash(paths):
|
48 |
+
# Returns a single hash value of a list of paths (files or dirs)
|
49 |
+
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
|
50 |
+
h = hashlib.md5(str(size).encode()) # hash sizes
|
51 |
+
h.update(''.join(paths).encode()) # hash paths
|
52 |
+
return h.hexdigest() # return hash
|
53 |
+
|
54 |
+
|
55 |
+
def exif_size(img):
|
56 |
+
# Returns exif-corrected PIL size
|
57 |
+
s = img.size # (width, height)
|
58 |
+
with contextlib.suppress(Exception):
|
59 |
+
rotation = dict(img._getexif().items())[orientation]
|
60 |
+
if rotation in [6, 8]: # rotation 270 or 90
|
61 |
+
s = (s[1], s[0])
|
62 |
+
return s
|
63 |
+
|
64 |
+
|
65 |
+
def exif_transpose(image):
|
66 |
+
"""
|
67 |
+
Transpose a PIL image accordingly if it has an EXIF Orientation tag.
|
68 |
+
Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
|
69 |
+
|
70 |
+
:param image: The image to transpose.
|
71 |
+
:return: An image.
|
72 |
+
"""
|
73 |
+
exif = image.getexif()
|
74 |
+
orientation = exif.get(0x0112, 1) # default 1
|
75 |
+
if orientation > 1:
|
76 |
+
method = {
|
77 |
+
2: Image.FLIP_LEFT_RIGHT,
|
78 |
+
3: Image.ROTATE_180,
|
79 |
+
4: Image.FLIP_TOP_BOTTOM,
|
80 |
+
5: Image.TRANSPOSE,
|
81 |
+
6: Image.ROTATE_270,
|
82 |
+
7: Image.TRANSVERSE,
|
83 |
+
8: Image.ROTATE_90}.get(orientation)
|
84 |
+
if method is not None:
|
85 |
+
image = image.transpose(method)
|
86 |
+
del exif[0x0112]
|
87 |
+
image.info["exif"] = exif.tobytes()
|
88 |
+
return image
|
89 |
+
|
90 |
+
|
91 |
+
def seed_worker(worker_id):
|
92 |
+
# Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader
|
93 |
+
worker_seed = torch.initial_seed() % 2 ** 32
|
94 |
+
np.random.seed(worker_seed)
|
95 |
+
random.seed(worker_seed)
|
96 |
+
|
97 |
+
|
98 |
+
def create_dataloader(path,
|
99 |
+
imgsz,
|
100 |
+
batch_size,
|
101 |
+
stride,
|
102 |
+
single_cls=False,
|
103 |
+
hyp=None,
|
104 |
+
augment=False,
|
105 |
+
cache=False,
|
106 |
+
pad=0.0,
|
107 |
+
rect=False,
|
108 |
+
rank=-1,
|
109 |
+
workers=8,
|
110 |
+
image_weights=False,
|
111 |
+
close_mosaic=False,
|
112 |
+
quad=False,
|
113 |
+
min_items=0,
|
114 |
+
prefix='',
|
115 |
+
shuffle=False):
|
116 |
+
if rect and shuffle:
|
117 |
+
LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
|
118 |
+
shuffle = False
|
119 |
+
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
120 |
+
dataset = LoadImagesAndLabels(
|
121 |
+
path,
|
122 |
+
imgsz,
|
123 |
+
batch_size,
|
124 |
+
augment=augment, # augmentation
|
125 |
+
hyp=hyp, # hyperparameters
|
126 |
+
rect=rect, # rectangular batches
|
127 |
+
cache_images=cache,
|
128 |
+
single_cls=single_cls,
|
129 |
+
stride=int(stride),
|
130 |
+
pad=pad,
|
131 |
+
image_weights=image_weights,
|
132 |
+
min_items=min_items,
|
133 |
+
prefix=prefix)
|
134 |
+
|
135 |
+
batch_size = min(batch_size, len(dataset))
|
136 |
+
nd = torch.cuda.device_count() # number of CUDA devices
|
137 |
+
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
|
138 |
+
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
139 |
+
#loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
|
140 |
+
loader = DataLoader if image_weights or close_mosaic else InfiniteDataLoader
|
141 |
+
generator = torch.Generator()
|
142 |
+
generator.manual_seed(6148914691236517205 + RANK)
|
143 |
+
return loader(dataset,
|
144 |
+
batch_size=batch_size,
|
145 |
+
shuffle=shuffle and sampler is None,
|
146 |
+
num_workers=nw,
|
147 |
+
sampler=sampler,
|
148 |
+
pin_memory=PIN_MEMORY,
|
149 |
+
collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn,
|
150 |
+
worker_init_fn=seed_worker,
|
151 |
+
generator=generator), dataset
|
152 |
+
|
153 |
+
|
154 |
+
class InfiniteDataLoader(dataloader.DataLoader):
|
155 |
+
""" Dataloader that reuses workers
|
156 |
+
|
157 |
+
Uses same syntax as vanilla DataLoader
|
158 |
+
"""
|
159 |
+
|
160 |
+
def __init__(self, *args, **kwargs):
|
161 |
+
super().__init__(*args, **kwargs)
|
162 |
+
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
163 |
+
self.iterator = super().__iter__()
|
164 |
+
|
165 |
+
def __len__(self):
|
166 |
+
return len(self.batch_sampler.sampler)
|
167 |
+
|
168 |
+
def __iter__(self):
|
169 |
+
for _ in range(len(self)):
|
170 |
+
yield next(self.iterator)
|
171 |
+
|
172 |
+
|
173 |
+
class _RepeatSampler:
|
174 |
+
""" Sampler that repeats forever
|
175 |
+
|
176 |
+
Args:
|
177 |
+
sampler (Sampler)
|
178 |
+
"""
|
179 |
+
|
180 |
+
def __init__(self, sampler):
|
181 |
+
self.sampler = sampler
|
182 |
+
|
183 |
+
def __iter__(self):
|
184 |
+
while True:
|
185 |
+
yield from iter(self.sampler)
|
186 |
+
|
187 |
+
|
188 |
+
class LoadScreenshots:
|
189 |
+
# YOLOv5 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"`
|
190 |
+
def __init__(self, source, img_size=640, stride=32, auto=True, transforms=None):
|
191 |
+
# source = [screen_number left top width height] (pixels)
|
192 |
+
check_requirements('mss')
|
193 |
+
import mss
|
194 |
+
|
195 |
+
source, *params = source.split()
|
196 |
+
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
|
197 |
+
if len(params) == 1:
|
198 |
+
self.screen = int(params[0])
|
199 |
+
elif len(params) == 4:
|
200 |
+
left, top, width, height = (int(x) for x in params)
|
201 |
+
elif len(params) == 5:
|
202 |
+
self.screen, left, top, width, height = (int(x) for x in params)
|
203 |
+
self.img_size = img_size
|
204 |
+
self.stride = stride
|
205 |
+
self.transforms = transforms
|
206 |
+
self.auto = auto
|
207 |
+
self.mode = 'stream'
|
208 |
+
self.frame = 0
|
209 |
+
self.sct = mss.mss()
|
210 |
+
|
211 |
+
# Parse monitor shape
|
212 |
+
monitor = self.sct.monitors[self.screen]
|
213 |
+
self.top = monitor["top"] if top is None else (monitor["top"] + top)
|
214 |
+
self.left = monitor["left"] if left is None else (monitor["left"] + left)
|
215 |
+
self.width = width or monitor["width"]
|
216 |
+
self.height = height or monitor["height"]
|
217 |
+
self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}
|
218 |
+
|
219 |
+
def __iter__(self):
|
220 |
+
return self
|
221 |
+
|
222 |
+
def __next__(self):
|
223 |
+
# mss screen capture: get raw pixels from the screen as np array
|
224 |
+
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR
|
225 |
+
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
|
226 |
+
|
227 |
+
if self.transforms:
|
228 |
+
im = self.transforms(im0) # transforms
|
229 |
+
else:
|
230 |
+
im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize
|
231 |
+
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
232 |
+
im = np.ascontiguousarray(im) # contiguous
|
233 |
+
self.frame += 1
|
234 |
+
return str(self.screen), im, im0, None, s # screen, img, original img, im0s, s
|
235 |
+
|
236 |
+
|
237 |
+
class LoadImages:
|
238 |
+
# YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
|
239 |
+
def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
240 |
+
files = []
|
241 |
+
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
|
242 |
+
p = str(Path(p).resolve())
|
243 |
+
if '*' in p:
|
244 |
+
files.extend(sorted(glob.glob(p, recursive=True))) # glob
|
245 |
+
elif os.path.isdir(p):
|
246 |
+
files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir
|
247 |
+
elif os.path.isfile(p):
|
248 |
+
files.append(p) # files
|
249 |
+
else:
|
250 |
+
raise FileNotFoundError(f'{p} does not exist')
|
251 |
+
|
252 |
+
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
|
253 |
+
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
|
254 |
+
ni, nv = len(images), len(videos)
|
255 |
+
|
256 |
+
self.img_size = img_size
|
257 |
+
self.stride = stride
|
258 |
+
self.files = images + videos
|
259 |
+
self.nf = ni + nv # number of files
|
260 |
+
self.video_flag = [False] * ni + [True] * nv
|
261 |
+
self.mode = 'image'
|
262 |
+
self.auto = auto
|
263 |
+
self.transforms = transforms # optional
|
264 |
+
self.vid_stride = vid_stride # video frame-rate stride
|
265 |
+
if any(videos):
|
266 |
+
self._new_video(videos[0]) # new video
|
267 |
+
else:
|
268 |
+
self.cap = None
|
269 |
+
assert self.nf > 0, f'No images or videos found in {p}. ' \
|
270 |
+
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
|
271 |
+
|
272 |
+
def __iter__(self):
|
273 |
+
self.count = 0
|
274 |
+
return self
|
275 |
+
|
276 |
+
def __next__(self):
|
277 |
+
if self.count == self.nf:
|
278 |
+
raise StopIteration
|
279 |
+
path = self.files[self.count]
|
280 |
+
|
281 |
+
if self.video_flag[self.count]:
|
282 |
+
# Read video
|
283 |
+
self.mode = 'video'
|
284 |
+
for _ in range(self.vid_stride):
|
285 |
+
self.cap.grab()
|
286 |
+
ret_val, im0 = self.cap.retrieve()
|
287 |
+
while not ret_val:
|
288 |
+
self.count += 1
|
289 |
+
self.cap.release()
|
290 |
+
if self.count == self.nf: # last video
|
291 |
+
raise StopIteration
|
292 |
+
path = self.files[self.count]
|
293 |
+
self._new_video(path)
|
294 |
+
ret_val, im0 = self.cap.read()
|
295 |
+
|
296 |
+
self.frame += 1
|
297 |
+
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
|
298 |
+
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
|
299 |
+
|
300 |
+
else:
|
301 |
+
# Read image
|
302 |
+
self.count += 1
|
303 |
+
im0 = cv2.imread(path) # BGR
|
304 |
+
assert im0 is not None, f'Image Not Found {path}'
|
305 |
+
s = f'image {self.count}/{self.nf} {path}: '
|
306 |
+
|
307 |
+
if self.transforms:
|
308 |
+
im = self.transforms(im0) # transforms
|
309 |
+
else:
|
310 |
+
im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize
|
311 |
+
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
312 |
+
im = np.ascontiguousarray(im) # contiguous
|
313 |
+
|
314 |
+
return path, im, im0, self.cap, s
|
315 |
+
|
316 |
+
def _new_video(self, path):
|
317 |
+
# Create a new video capture object
|
318 |
+
self.frame = 0
|
319 |
+
self.cap = cv2.VideoCapture(path)
|
320 |
+
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
|
321 |
+
self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees
|
322 |
+
# self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0) # disable https://github.com/ultralytics/yolov5/issues/8493
|
323 |
+
|
324 |
+
def _cv2_rotate(self, im):
|
325 |
+
# Rotate a cv2 video manually
|
326 |
+
if self.orientation == 0:
|
327 |
+
return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
|
328 |
+
elif self.orientation == 180:
|
329 |
+
return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
330 |
+
elif self.orientation == 90:
|
331 |
+
return cv2.rotate(im, cv2.ROTATE_180)
|
332 |
+
return im
|
333 |
+
|
334 |
+
def __len__(self):
|
335 |
+
return self.nf # number of files
|
336 |
+
|
337 |
+
|
338 |
+
class LoadStreams:
|
339 |
+
# YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
|
340 |
+
def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
341 |
+
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
|
342 |
+
self.mode = 'stream'
|
343 |
+
self.img_size = img_size
|
344 |
+
self.stride = stride
|
345 |
+
self.vid_stride = vid_stride # video frame-rate stride
|
346 |
+
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
|
347 |
+
n = len(sources)
|
348 |
+
self.sources = [clean_str(x) for x in sources] # clean source names for later
|
349 |
+
self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
|
350 |
+
for i, s in enumerate(sources): # index, source
|
351 |
+
# Start thread to read frames from video stream
|
352 |
+
st = f'{i + 1}/{n}: {s}... '
|
353 |
+
if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video
|
354 |
+
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc'
|
355 |
+
check_requirements(('pafy', 'youtube_dl==2020.12.2'))
|
356 |
+
import pafy
|
357 |
+
s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
|
358 |
+
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
|
359 |
+
if s == 0:
|
360 |
+
assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.'
|
361 |
+
assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.'
|
362 |
+
cap = cv2.VideoCapture(s)
|
363 |
+
assert cap.isOpened(), f'{st}Failed to open {s}'
|
364 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
365 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
366 |
+
fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
|
367 |
+
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
|
368 |
+
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
|
369 |
+
|
370 |
+
_, self.imgs[i] = cap.read() # guarantee first frame
|
371 |
+
self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
|
372 |
+
LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
|
373 |
+
self.threads[i].start()
|
374 |
+
LOGGER.info('') # newline
|
375 |
+
|
376 |
+
# check for common shapes
|
377 |
+
s = np.stack([letterbox(x, img_size, stride=stride, auto=auto)[0].shape for x in self.imgs])
|
378 |
+
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
379 |
+
self.auto = auto and self.rect
|
380 |
+
self.transforms = transforms # optional
|
381 |
+
if not self.rect:
|
382 |
+
LOGGER.warning('WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams.')
|
383 |
+
|
384 |
+
def update(self, i, cap, stream):
|
385 |
+
# Read stream `i` frames in daemon thread
|
386 |
+
n, f = 0, self.frames[i] # frame number, frame array
|
387 |
+
while cap.isOpened() and n < f:
|
388 |
+
n += 1
|
389 |
+
cap.grab() # .read() = .grab() followed by .retrieve()
|
390 |
+
if n % self.vid_stride == 0:
|
391 |
+
success, im = cap.retrieve()
|
392 |
+
if success:
|
393 |
+
self.imgs[i] = im
|
394 |
+
else:
|
395 |
+
LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.')
|
396 |
+
self.imgs[i] = np.zeros_like(self.imgs[i])
|
397 |
+
cap.open(stream) # re-open stream if signal was lost
|
398 |
+
time.sleep(0.0) # wait time
|
399 |
+
|
400 |
+
def __iter__(self):
|
401 |
+
self.count = -1
|
402 |
+
return self
|
403 |
+
|
404 |
+
def __next__(self):
|
405 |
+
self.count += 1
|
406 |
+
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
|
407 |
+
cv2.destroyAllWindows()
|
408 |
+
raise StopIteration
|
409 |
+
|
410 |
+
im0 = self.imgs.copy()
|
411 |
+
if self.transforms:
|
412 |
+
im = np.stack([self.transforms(x) for x in im0]) # transforms
|
413 |
+
else:
|
414 |
+
im = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0] for x in im0]) # resize
|
415 |
+
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
|
416 |
+
im = np.ascontiguousarray(im) # contiguous
|
417 |
+
|
418 |
+
return self.sources, im, im0, None, ''
|
419 |
+
|
420 |
+
def __len__(self):
|
421 |
+
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
|
422 |
+
|
423 |
+
|
424 |
+
def img2label_paths(img_paths):
|
425 |
+
# Define label paths as a function of image paths
|
426 |
+
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
|
427 |
+
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
|
428 |
+
|
429 |
+
|
430 |
+
class LoadImagesAndLabels(Dataset):
|
431 |
+
# YOLOv5 train_loader/val_loader, loads images and labels for training and validation
|
432 |
+
cache_version = 0.6 # dataset labels *.cache version
|
433 |
+
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
|
434 |
+
|
435 |
+
def __init__(self,
|
436 |
+
path,
|
437 |
+
img_size=640,
|
438 |
+
batch_size=16,
|
439 |
+
augment=False,
|
440 |
+
hyp=None,
|
441 |
+
rect=False,
|
442 |
+
image_weights=False,
|
443 |
+
cache_images=False,
|
444 |
+
single_cls=False,
|
445 |
+
stride=32,
|
446 |
+
pad=0.0,
|
447 |
+
min_items=0,
|
448 |
+
prefix=''):
|
449 |
+
self.img_size = img_size
|
450 |
+
self.augment = augment
|
451 |
+
self.hyp = hyp
|
452 |
+
self.image_weights = image_weights
|
453 |
+
self.rect = False if image_weights else rect
|
454 |
+
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
455 |
+
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
456 |
+
self.stride = stride
|
457 |
+
self.path = path
|
458 |
+
self.albumentations = Albumentations(size=img_size) if augment else None
|
459 |
+
|
460 |
+
try:
|
461 |
+
f = [] # image files
|
462 |
+
for p in path if isinstance(path, list) else [path]:
|
463 |
+
p = Path(p) # os-agnostic
|
464 |
+
if p.is_dir(): # dir
|
465 |
+
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
466 |
+
# f = list(p.rglob('*.*')) # pathlib
|
467 |
+
elif p.is_file(): # file
|
468 |
+
with open(p) as t:
|
469 |
+
t = t.read().strip().splitlines()
|
470 |
+
parent = str(p.parent) + os.sep
|
471 |
+
f += [x.replace('./', parent, 1) if x.startswith('./') else x for x in t] # to global path
|
472 |
+
# f += [p.parent / x.lstrip(os.sep) for x in t] # to global path (pathlib)
|
473 |
+
else:
|
474 |
+
raise FileNotFoundError(f'{prefix}{p} does not exist')
|
475 |
+
self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
|
476 |
+
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
477 |
+
assert self.im_files, f'{prefix}No images found'
|
478 |
+
except Exception as e:
|
479 |
+
raise Exception(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e
|
480 |
+
|
481 |
+
# Check cache
|
482 |
+
self.label_files = img2label_paths(self.im_files) # labels
|
483 |
+
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
|
484 |
+
try:
|
485 |
+
cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
|
486 |
+
assert cache['version'] == self.cache_version # matches current version
|
487 |
+
assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash
|
488 |
+
except Exception:
|
489 |
+
cache, exists = self.cache_labels(cache_path, prefix), False # run cache ops
|
490 |
+
|
491 |
+
# Display cache
|
492 |
+
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
|
493 |
+
if exists and LOCAL_RANK in {-1, 0}:
|
494 |
+
d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
|
495 |
+
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results
|
496 |
+
if cache['msgs']:
|
497 |
+
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
|
498 |
+
assert nf > 0 or not augment, f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}'
|
499 |
+
|
500 |
+
# Read cache
|
501 |
+
[cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
|
502 |
+
labels, shapes, self.segments = zip(*cache.values())
|
503 |
+
nl = len(np.concatenate(labels, 0)) # number of labels
|
504 |
+
assert nl > 0 or not augment, f'{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}'
|
505 |
+
self.labels = list(labels)
|
506 |
+
self.shapes = np.array(shapes)
|
507 |
+
self.im_files = list(cache.keys()) # update
|
508 |
+
self.label_files = img2label_paths(cache.keys()) # update
|
509 |
+
|
510 |
+
# Filter images
|
511 |
+
if min_items:
|
512 |
+
include = np.array([len(x) >= min_items for x in self.labels]).nonzero()[0].astype(int)
|
513 |
+
LOGGER.info(f'{prefix}{n - len(include)}/{n} images filtered from dataset')
|
514 |
+
self.im_files = [self.im_files[i] for i in include]
|
515 |
+
self.label_files = [self.label_files[i] for i in include]
|
516 |
+
self.labels = [self.labels[i] for i in include]
|
517 |
+
self.segments = [self.segments[i] for i in include]
|
518 |
+
self.shapes = self.shapes[include] # wh
|
519 |
+
|
520 |
+
# Create indices
|
521 |
+
n = len(self.shapes) # number of images
|
522 |
+
bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index
|
523 |
+
nb = bi[-1] + 1 # number of batches
|
524 |
+
self.batch = bi # batch index of image
|
525 |
+
self.n = n
|
526 |
+
self.indices = range(n)
|
527 |
+
|
528 |
+
# Update labels
|
529 |
+
include_class = [] # filter labels to include only these classes (optional)
|
530 |
+
include_class_array = np.array(include_class).reshape(1, -1)
|
531 |
+
for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
|
532 |
+
if include_class:
|
533 |
+
j = (label[:, 0:1] == include_class_array).any(1)
|
534 |
+
self.labels[i] = label[j]
|
535 |
+
if segment:
|
536 |
+
self.segments[i] = segment[j]
|
537 |
+
if single_cls: # single-class training, merge all classes into 0
|
538 |
+
self.labels[i][:, 0] = 0
|
539 |
+
|
540 |
+
# Rectangular Training
|
541 |
+
if self.rect:
|
542 |
+
# Sort by aspect ratio
|
543 |
+
s = self.shapes # wh
|
544 |
+
ar = s[:, 1] / s[:, 0] # aspect ratio
|
545 |
+
irect = ar.argsort()
|
546 |
+
self.im_files = [self.im_files[i] for i in irect]
|
547 |
+
self.label_files = [self.label_files[i] for i in irect]
|
548 |
+
self.labels = [self.labels[i] for i in irect]
|
549 |
+
self.segments = [self.segments[i] for i in irect]
|
550 |
+
self.shapes = s[irect] # wh
|
551 |
+
ar = ar[irect]
|
552 |
+
|
553 |
+
# Set training image shapes
|
554 |
+
shapes = [[1, 1]] * nb
|
555 |
+
for i in range(nb):
|
556 |
+
ari = ar[bi == i]
|
557 |
+
mini, maxi = ari.min(), ari.max()
|
558 |
+
if maxi < 1:
|
559 |
+
shapes[i] = [maxi, 1]
|
560 |
+
elif mini > 1:
|
561 |
+
shapes[i] = [1, 1 / mini]
|
562 |
+
|
563 |
+
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride
|
564 |
+
|
565 |
+
# Cache images into RAM/disk for faster training
|
566 |
+
if cache_images == 'ram' and not self.check_cache_ram(prefix=prefix):
|
567 |
+
cache_images = False
|
568 |
+
self.ims = [None] * n
|
569 |
+
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
|
570 |
+
if cache_images:
|
571 |
+
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
572 |
+
self.im_hw0, self.im_hw = [None] * n, [None] * n
|
573 |
+
fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
|
574 |
+
results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
|
575 |
+
pbar = tqdm(enumerate(results), total=n, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0)
|
576 |
+
for i, x in pbar:
|
577 |
+
if cache_images == 'disk':
|
578 |
+
b += self.npy_files[i].stat().st_size
|
579 |
+
else: # 'ram'
|
580 |
+
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
|
581 |
+
b += self.ims[i].nbytes
|
582 |
+
pbar.desc = f'{prefix}Caching images ({b / gb:.1f}GB {cache_images})'
|
583 |
+
pbar.close()
|
584 |
+
|
585 |
+
def check_cache_ram(self, safety_margin=0.1, prefix=''):
|
586 |
+
# Check image caching requirements vs available memory
|
587 |
+
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
588 |
+
n = min(self.n, 30) # extrapolate from 30 random images
|
589 |
+
for _ in range(n):
|
590 |
+
im = cv2.imread(random.choice(self.im_files)) # sample image
|
591 |
+
ratio = self.img_size / max(im.shape[0], im.shape[1]) # max(h, w) # ratio
|
592 |
+
b += im.nbytes * ratio ** 2
|
593 |
+
mem_required = b * self.n / n # GB required to cache dataset into RAM
|
594 |
+
mem = psutil.virtual_memory()
|
595 |
+
cache = mem_required * (1 + safety_margin) < mem.available # to cache or not to cache, that is the question
|
596 |
+
if not cache:
|
597 |
+
LOGGER.info(f"{prefix}{mem_required / gb:.1f}GB RAM required, "
|
598 |
+
f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, "
|
599 |
+
f"{'caching images ✅' if cache else 'not caching images ⚠️'}")
|
600 |
+
return cache
|
601 |
+
|
602 |
+
def cache_labels(self, path=Path('./labels.cache'), prefix=''):
|
603 |
+
# Cache dataset labels, check images and read shapes
|
604 |
+
x = {} # dict
|
605 |
+
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
|
606 |
+
desc = f"{prefix}Scanning {path.parent / path.stem}..."
|
607 |
+
with Pool(NUM_THREADS) as pool:
|
608 |
+
pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
|
609 |
+
desc=desc,
|
610 |
+
total=len(self.im_files),
|
611 |
+
bar_format=TQDM_BAR_FORMAT)
|
612 |
+
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
|
613 |
+
nm += nm_f
|
614 |
+
nf += nf_f
|
615 |
+
ne += ne_f
|
616 |
+
nc += nc_f
|
617 |
+
if im_file:
|
618 |
+
x[im_file] = [lb, shape, segments]
|
619 |
+
if msg:
|
620 |
+
msgs.append(msg)
|
621 |
+
pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
|
622 |
+
|
623 |
+
pbar.close()
|
624 |
+
if msgs:
|
625 |
+
LOGGER.info('\n'.join(msgs))
|
626 |
+
if nf == 0:
|
627 |
+
LOGGER.warning(f'{prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}')
|
628 |
+
x['hash'] = get_hash(self.label_files + self.im_files)
|
629 |
+
x['results'] = nf, nm, ne, nc, len(self.im_files)
|
630 |
+
x['msgs'] = msgs # warnings
|
631 |
+
x['version'] = self.cache_version # cache version
|
632 |
+
try:
|
633 |
+
np.save(path, x) # save cache for next time
|
634 |
+
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
|
635 |
+
LOGGER.info(f'{prefix}New cache created: {path}')
|
636 |
+
except Exception as e:
|
637 |
+
LOGGER.warning(f'{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable: {e}') # not writeable
|
638 |
+
return x
|
639 |
+
|
640 |
+
def __len__(self):
|
641 |
+
return len(self.im_files)
|
642 |
+
|
643 |
+
# def __iter__(self):
|
644 |
+
# self.count = -1
|
645 |
+
# print('ran dataset iter')
|
646 |
+
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
647 |
+
# return self
|
648 |
+
|
649 |
+
def __getitem__(self, index):
|
650 |
+
index = self.indices[index] # linear, shuffled, or image_weights
|
651 |
+
|
652 |
+
hyp = self.hyp
|
653 |
+
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
654 |
+
if mosaic:
|
655 |
+
# Load mosaic
|
656 |
+
img, labels = self.load_mosaic(index)
|
657 |
+
shapes = None
|
658 |
+
|
659 |
+
# MixUp augmentation
|
660 |
+
if random.random() < hyp['mixup']:
|
661 |
+
img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
|
662 |
+
|
663 |
+
else:
|
664 |
+
# Load image
|
665 |
+
img, (h0, w0), (h, w) = self.load_image(index)
|
666 |
+
|
667 |
+
# Letterbox
|
668 |
+
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
669 |
+
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
670 |
+
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
671 |
+
|
672 |
+
labels = self.labels[index].copy()
|
673 |
+
if labels.size: # normalized xywh to pixel xyxy format
|
674 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
|
675 |
+
|
676 |
+
if self.augment:
|
677 |
+
img, labels = random_perspective(img,
|
678 |
+
labels,
|
679 |
+
degrees=hyp['degrees'],
|
680 |
+
translate=hyp['translate'],
|
681 |
+
scale=hyp['scale'],
|
682 |
+
shear=hyp['shear'],
|
683 |
+
perspective=hyp['perspective'])
|
684 |
+
|
685 |
+
nl = len(labels) # number of labels
|
686 |
+
if nl:
|
687 |
+
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
|
688 |
+
|
689 |
+
if self.augment:
|
690 |
+
# Albumentations
|
691 |
+
img, labels = self.albumentations(img, labels)
|
692 |
+
nl = len(labels) # update after albumentations
|
693 |
+
|
694 |
+
# HSV color-space
|
695 |
+
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
696 |
+
|
697 |
+
# Flip up-down
|
698 |
+
if random.random() < hyp['flipud']:
|
699 |
+
img = np.flipud(img)
|
700 |
+
if nl:
|
701 |
+
labels[:, 2] = 1 - labels[:, 2]
|
702 |
+
|
703 |
+
# Flip left-right
|
704 |
+
if random.random() < hyp['fliplr']:
|
705 |
+
img = np.fliplr(img)
|
706 |
+
if nl:
|
707 |
+
labels[:, 1] = 1 - labels[:, 1]
|
708 |
+
|
709 |
+
# Cutouts
|
710 |
+
# labels = cutout(img, labels, p=0.5)
|
711 |
+
# nl = len(labels) # update after cutout
|
712 |
+
|
713 |
+
labels_out = torch.zeros((nl, 6))
|
714 |
+
if nl:
|
715 |
+
labels_out[:, 1:] = torch.from_numpy(labels)
|
716 |
+
|
717 |
+
# Convert
|
718 |
+
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
719 |
+
img = np.ascontiguousarray(img)
|
720 |
+
|
721 |
+
return torch.from_numpy(img), labels_out, self.im_files[index], shapes
|
722 |
+
|
723 |
+
def load_image(self, i):
|
724 |
+
# Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
|
725 |
+
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
|
726 |
+
if im is None: # not cached in RAM
|
727 |
+
if fn.exists(): # load npy
|
728 |
+
im = np.load(fn)
|
729 |
+
else: # read image
|
730 |
+
im = cv2.imread(f) # BGR
|
731 |
+
assert im is not None, f'Image Not Found {f}'
|
732 |
+
h0, w0 = im.shape[:2] # orig hw
|
733 |
+
r = self.img_size / max(h0, w0) # ratio
|
734 |
+
if r != 1: # if sizes are not equal
|
735 |
+
interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA
|
736 |
+
im = cv2.resize(im, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
737 |
+
return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
|
738 |
+
return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized
|
739 |
+
|
740 |
+
def cache_images_to_disk(self, i):
|
741 |
+
# Saves an image as an *.npy file for faster loading
|
742 |
+
f = self.npy_files[i]
|
743 |
+
if not f.exists():
|
744 |
+
np.save(f.as_posix(), cv2.imread(self.im_files[i]))
|
745 |
+
|
746 |
+
def load_mosaic(self, index):
|
747 |
+
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
|
748 |
+
labels4, segments4 = [], []
|
749 |
+
s = self.img_size
|
750 |
+
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
|
751 |
+
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
|
752 |
+
random.shuffle(indices)
|
753 |
+
for i, index in enumerate(indices):
|
754 |
+
# Load image
|
755 |
+
img, _, (h, w) = self.load_image(index)
|
756 |
+
|
757 |
+
# place img in img4
|
758 |
+
if i == 0: # top left
|
759 |
+
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
760 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
761 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
762 |
+
elif i == 1: # top right
|
763 |
+
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
764 |
+
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
765 |
+
elif i == 2: # bottom left
|
766 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
767 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
768 |
+
elif i == 3: # bottom right
|
769 |
+
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
770 |
+
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
771 |
+
|
772 |
+
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
773 |
+
padw = x1a - x1b
|
774 |
+
padh = y1a - y1b
|
775 |
+
|
776 |
+
# Labels
|
777 |
+
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
778 |
+
if labels.size:
|
779 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
780 |
+
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
|
781 |
+
labels4.append(labels)
|
782 |
+
segments4.extend(segments)
|
783 |
+
|
784 |
+
# Concat/clip labels
|
785 |
+
labels4 = np.concatenate(labels4, 0)
|
786 |
+
for x in (labels4[:, 1:], *segments4):
|
787 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
788 |
+
# img4, labels4 = replicate(img4, labels4) # replicate
|
789 |
+
|
790 |
+
# Augment
|
791 |
+
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
|
792 |
+
img4, labels4 = random_perspective(img4,
|
793 |
+
labels4,
|
794 |
+
segments4,
|
795 |
+
degrees=self.hyp['degrees'],
|
796 |
+
translate=self.hyp['translate'],
|
797 |
+
scale=self.hyp['scale'],
|
798 |
+
shear=self.hyp['shear'],
|
799 |
+
perspective=self.hyp['perspective'],
|
800 |
+
border=self.mosaic_border) # border to remove
|
801 |
+
|
802 |
+
return img4, labels4
|
803 |
+
|
804 |
+
def load_mosaic9(self, index):
|
805 |
+
# YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
|
806 |
+
labels9, segments9 = [], []
|
807 |
+
s = self.img_size
|
808 |
+
indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
|
809 |
+
random.shuffle(indices)
|
810 |
+
hp, wp = -1, -1 # height, width previous
|
811 |
+
for i, index in enumerate(indices):
|
812 |
+
# Load image
|
813 |
+
img, _, (h, w) = self.load_image(index)
|
814 |
+
|
815 |
+
# place img in img9
|
816 |
+
if i == 0: # center
|
817 |
+
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
818 |
+
h0, w0 = h, w
|
819 |
+
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
|
820 |
+
elif i == 1: # top
|
821 |
+
c = s, s - h, s + w, s
|
822 |
+
elif i == 2: # top right
|
823 |
+
c = s + wp, s - h, s + wp + w, s
|
824 |
+
elif i == 3: # right
|
825 |
+
c = s + w0, s, s + w0 + w, s + h
|
826 |
+
elif i == 4: # bottom right
|
827 |
+
c = s + w0, s + hp, s + w0 + w, s + hp + h
|
828 |
+
elif i == 5: # bottom
|
829 |
+
c = s + w0 - w, s + h0, s + w0, s + h0 + h
|
830 |
+
elif i == 6: # bottom left
|
831 |
+
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
|
832 |
+
elif i == 7: # left
|
833 |
+
c = s - w, s + h0 - h, s, s + h0
|
834 |
+
elif i == 8: # top left
|
835 |
+
c = s - w, s + h0 - hp - h, s, s + h0 - hp
|
836 |
+
|
837 |
+
padx, pady = c[:2]
|
838 |
+
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
|
839 |
+
|
840 |
+
# Labels
|
841 |
+
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
842 |
+
if labels.size:
|
843 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
|
844 |
+
segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
|
845 |
+
labels9.append(labels)
|
846 |
+
segments9.extend(segments)
|
847 |
+
|
848 |
+
# Image
|
849 |
+
img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
|
850 |
+
hp, wp = h, w # height, width previous
|
851 |
+
|
852 |
+
# Offset
|
853 |
+
yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y
|
854 |
+
img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
|
855 |
+
|
856 |
+
# Concat/clip labels
|
857 |
+
labels9 = np.concatenate(labels9, 0)
|
858 |
+
labels9[:, [1, 3]] -= xc
|
859 |
+
labels9[:, [2, 4]] -= yc
|
860 |
+
c = np.array([xc, yc]) # centers
|
861 |
+
segments9 = [x - c for x in segments9]
|
862 |
+
|
863 |
+
for x in (labels9[:, 1:], *segments9):
|
864 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
865 |
+
# img9, labels9 = replicate(img9, labels9) # replicate
|
866 |
+
|
867 |
+
# Augment
|
868 |
+
img9, labels9, segments9 = copy_paste(img9, labels9, segments9, p=self.hyp['copy_paste'])
|
869 |
+
img9, labels9 = random_perspective(img9,
|
870 |
+
labels9,
|
871 |
+
segments9,
|
872 |
+
degrees=self.hyp['degrees'],
|
873 |
+
translate=self.hyp['translate'],
|
874 |
+
scale=self.hyp['scale'],
|
875 |
+
shear=self.hyp['shear'],
|
876 |
+
perspective=self.hyp['perspective'],
|
877 |
+
border=self.mosaic_border) # border to remove
|
878 |
+
|
879 |
+
return img9, labels9
|
880 |
+
|
881 |
+
@staticmethod
|
882 |
+
def collate_fn(batch):
|
883 |
+
im, label, path, shapes = zip(*batch) # transposed
|
884 |
+
for i, lb in enumerate(label):
|
885 |
+
lb[:, 0] = i # add target image index for build_targets()
|
886 |
+
return torch.stack(im, 0), torch.cat(label, 0), path, shapes
|
887 |
+
|
888 |
+
@staticmethod
|
889 |
+
def collate_fn4(batch):
|
890 |
+
im, label, path, shapes = zip(*batch) # transposed
|
891 |
+
n = len(shapes) // 4
|
892 |
+
im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
|
893 |
+
|
894 |
+
ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
|
895 |
+
wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
|
896 |
+
s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale
|
897 |
+
for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
|
898 |
+
i *= 4
|
899 |
+
if random.random() < 0.5:
|
900 |
+
im1 = F.interpolate(im[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear',
|
901 |
+
align_corners=False)[0].type(im[i].type())
|
902 |
+
lb = label[i]
|
903 |
+
else:
|
904 |
+
im1 = torch.cat((torch.cat((im[i], im[i + 1]), 1), torch.cat((im[i + 2], im[i + 3]), 1)), 2)
|
905 |
+
lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
|
906 |
+
im4.append(im1)
|
907 |
+
label4.append(lb)
|
908 |
+
|
909 |
+
for i, lb in enumerate(label4):
|
910 |
+
lb[:, 0] = i # add target image index for build_targets()
|
911 |
+
|
912 |
+
return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
|
913 |
+
|
914 |
+
|
915 |
+
# Ancillary functions --------------------------------------------------------------------------------------------------
|
916 |
+
def flatten_recursive(path=DATASETS_DIR / 'coco128'):
|
917 |
+
# Flatten a recursive directory by bringing all files to top level
|
918 |
+
new_path = Path(f'{str(path)}_flat')
|
919 |
+
if os.path.exists(new_path):
|
920 |
+
shutil.rmtree(new_path) # delete output folder
|
921 |
+
os.makedirs(new_path) # make new output folder
|
922 |
+
for file in tqdm(glob.glob(f'{str(Path(path))}/**/*.*', recursive=True)):
|
923 |
+
shutil.copyfile(file, new_path / Path(file).name)
|
924 |
+
|
925 |
+
|
926 |
+
def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders import *; extract_boxes()
|
927 |
+
# Convert detection dataset into classification dataset, with one directory per class
|
928 |
+
path = Path(path) # images dir
|
929 |
+
shutil.rmtree(path / 'classification') if (path / 'classification').is_dir() else None # remove existing
|
930 |
+
files = list(path.rglob('*.*'))
|
931 |
+
n = len(files) # number of files
|
932 |
+
for im_file in tqdm(files, total=n):
|
933 |
+
if im_file.suffix[1:] in IMG_FORMATS:
|
934 |
+
# image
|
935 |
+
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
|
936 |
+
h, w = im.shape[:2]
|
937 |
+
|
938 |
+
# labels
|
939 |
+
lb_file = Path(img2label_paths([str(im_file)])[0])
|
940 |
+
if Path(lb_file).exists():
|
941 |
+
with open(lb_file) as f:
|
942 |
+
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
943 |
+
|
944 |
+
for j, x in enumerate(lb):
|
945 |
+
c = int(x[0]) # class
|
946 |
+
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
|
947 |
+
if not f.parent.is_dir():
|
948 |
+
f.parent.mkdir(parents=True)
|
949 |
+
|
950 |
+
b = x[1:] * [w, h, w, h] # box
|
951 |
+
# b[2:] = b[2:].max() # rectangle to square
|
952 |
+
b[2:] = b[2:] * 1.2 + 3 # pad
|
953 |
+
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)
|
954 |
+
|
955 |
+
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
956 |
+
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
957 |
+
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
958 |
+
|
959 |
+
|
960 |
+
def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
|
961 |
+
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
962 |
+
Usage: from utils.dataloaders import *; autosplit()
|
963 |
+
Arguments
|
964 |
+
path: Path to images directory
|
965 |
+
weights: Train, val, test weights (list, tuple)
|
966 |
+
annotated_only: Only use images with an annotated txt file
|
967 |
+
"""
|
968 |
+
path = Path(path) # images dir
|
969 |
+
files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only
|
970 |
+
n = len(files) # number of files
|
971 |
+
random.seed(0) # for reproducibility
|
972 |
+
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
973 |
+
|
974 |
+
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
975 |
+
for x in txt:
|
976 |
+
if (path.parent / x).exists():
|
977 |
+
(path.parent / x).unlink() # remove existing
|
978 |
+
|
979 |
+
print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
|
980 |
+
for i, img in tqdm(zip(indices, files), total=n):
|
981 |
+
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
|
982 |
+
with open(path.parent / txt[i], 'a') as f:
|
983 |
+
f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n') # add image to txt file
|
984 |
+
|
985 |
+
|
986 |
+
def verify_image_label(args):
|
987 |
+
# Verify one image-label pair
|
988 |
+
im_file, lb_file, prefix = args
|
989 |
+
nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments
|
990 |
+
try:
|
991 |
+
# verify images
|
992 |
+
im = Image.open(im_file)
|
993 |
+
im.verify() # PIL verify
|
994 |
+
shape = exif_size(im) # image size
|
995 |
+
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
|
996 |
+
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
|
997 |
+
if im.format.lower() in ('jpg', 'jpeg'):
|
998 |
+
with open(im_file, 'rb') as f:
|
999 |
+
f.seek(-2, 2)
|
1000 |
+
if f.read() != b'\xff\xd9': # corrupt JPEG
|
1001 |
+
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
|
1002 |
+
msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved'
|
1003 |
+
|
1004 |
+
# verify labels
|
1005 |
+
if os.path.isfile(lb_file):
|
1006 |
+
nf = 1 # label found
|
1007 |
+
with open(lb_file) as f:
|
1008 |
+
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
|
1009 |
+
if any(len(x) > 6 for x in lb): # is segment
|
1010 |
+
classes = np.array([x[0] for x in lb], dtype=np.float32)
|
1011 |
+
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
|
1012 |
+
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
|
1013 |
+
lb = np.array(lb, dtype=np.float32)
|
1014 |
+
nl = len(lb)
|
1015 |
+
if nl:
|
1016 |
+
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
|
1017 |
+
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
|
1018 |
+
assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
|
1019 |
+
_, i = np.unique(lb, axis=0, return_index=True)
|
1020 |
+
if len(i) < nl: # duplicate row check
|
1021 |
+
lb = lb[i] # remove duplicates
|
1022 |
+
if segments:
|
1023 |
+
segments = [segments[x] for x in i]
|
1024 |
+
msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed'
|
1025 |
+
else:
|
1026 |
+
ne = 1 # label empty
|
1027 |
+
lb = np.zeros((0, 5), dtype=np.float32)
|
1028 |
+
else:
|
1029 |
+
nm = 1 # label missing
|
1030 |
+
lb = np.zeros((0, 5), dtype=np.float32)
|
1031 |
+
return im_file, lb, shape, segments, nm, nf, ne, nc, msg
|
1032 |
+
except Exception as e:
|
1033 |
+
nc = 1
|
1034 |
+
msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}'
|
1035 |
+
return [None, None, None, None, nm, nf, ne, nc, msg]
|
1036 |
+
|
1037 |
+
|
1038 |
+
class HUBDatasetStats():
|
1039 |
+
""" Class for generating HUB dataset JSON and `-hub` dataset directory
|
1040 |
+
|
1041 |
+
Arguments
|
1042 |
+
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
|
1043 |
+
autodownload: Attempt to download dataset if not found locally
|
1044 |
+
|
1045 |
+
Usage
|
1046 |
+
from utils.dataloaders import HUBDatasetStats
|
1047 |
+
stats = HUBDatasetStats('coco128.yaml', autodownload=True) # usage 1
|
1048 |
+
stats = HUBDatasetStats('path/to/coco128.zip') # usage 2
|
1049 |
+
stats.get_json(save=False)
|
1050 |
+
stats.process_images()
|
1051 |
+
"""
|
1052 |
+
|
1053 |
+
def __init__(self, path='coco128.yaml', autodownload=False):
|
1054 |
+
# Initialize class
|
1055 |
+
zipped, data_dir, yaml_path = self._unzip(Path(path))
|
1056 |
+
try:
|
1057 |
+
with open(check_yaml(yaml_path), errors='ignore') as f:
|
1058 |
+
data = yaml.safe_load(f) # data dict
|
1059 |
+
if zipped:
|
1060 |
+
data['path'] = data_dir
|
1061 |
+
except Exception as e:
|
1062 |
+
raise Exception("error/HUB/dataset_stats/yaml_load") from e
|
1063 |
+
|
1064 |
+
check_dataset(data, autodownload) # download dataset if missing
|
1065 |
+
self.hub_dir = Path(data['path'] + '-hub')
|
1066 |
+
self.im_dir = self.hub_dir / 'images'
|
1067 |
+
self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images
|
1068 |
+
self.stats = {'nc': data['nc'], 'names': list(data['names'].values())} # statistics dictionary
|
1069 |
+
self.data = data
|
1070 |
+
|
1071 |
+
@staticmethod
|
1072 |
+
def _find_yaml(dir):
|
1073 |
+
# Return data.yaml file
|
1074 |
+
files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive
|
1075 |
+
assert files, f'No *.yaml file found in {dir}'
|
1076 |
+
if len(files) > 1:
|
1077 |
+
files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name
|
1078 |
+
assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
|
1079 |
+
assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
|
1080 |
+
return files[0]
|
1081 |
+
|
1082 |
+
def _unzip(self, path):
|
1083 |
+
# Unzip data.zip
|
1084 |
+
if not str(path).endswith('.zip'): # path is data.yaml
|
1085 |
+
return False, None, path
|
1086 |
+
assert Path(path).is_file(), f'Error unzipping {path}, file not found'
|
1087 |
+
unzip_file(path, path=path.parent)
|
1088 |
+
dir = path.with_suffix('') # dataset directory == zip name
|
1089 |
+
assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/'
|
1090 |
+
return True, str(dir), self._find_yaml(dir) # zipped, data_dir, yaml_path
|
1091 |
+
|
1092 |
+
def _hub_ops(self, f, max_dim=1920):
|
1093 |
+
# HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
|
1094 |
+
f_new = self.im_dir / Path(f).name # dataset-hub image filename
|
1095 |
+
try: # use PIL
|
1096 |
+
im = Image.open(f)
|
1097 |
+
r = max_dim / max(im.height, im.width) # ratio
|
1098 |
+
if r < 1.0: # image too large
|
1099 |
+
im = im.resize((int(im.width * r), int(im.height * r)))
|
1100 |
+
im.save(f_new, 'JPEG', quality=50, optimize=True) # save
|
1101 |
+
except Exception as e: # use OpenCV
|
1102 |
+
LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}')
|
1103 |
+
im = cv2.imread(f)
|
1104 |
+
im_height, im_width = im.shape[:2]
|
1105 |
+
r = max_dim / max(im_height, im_width) # ratio
|
1106 |
+
if r < 1.0: # image too large
|
1107 |
+
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
|
1108 |
+
cv2.imwrite(str(f_new), im)
|
1109 |
+
|
1110 |
+
def get_json(self, save=False, verbose=False):
|
1111 |
+
# Return dataset JSON for Ultralytics HUB
|
1112 |
+
def _round(labels):
|
1113 |
+
# Update labels to integer class and 6 decimal place floats
|
1114 |
+
return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
|
1115 |
+
|
1116 |
+
for split in 'train', 'val', 'test':
|
1117 |
+
if self.data.get(split) is None:
|
1118 |
+
self.stats[split] = None # i.e. no test set
|
1119 |
+
continue
|
1120 |
+
dataset = LoadImagesAndLabels(self.data[split]) # load dataset
|
1121 |
+
x = np.array([
|
1122 |
+
np.bincount(label[:, 0].astype(int), minlength=self.data['nc'])
|
1123 |
+
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics')]) # shape(128x80)
|
1124 |
+
self.stats[split] = {
|
1125 |
+
'instance_stats': {
|
1126 |
+
'total': int(x.sum()),
|
1127 |
+
'per_class': x.sum(0).tolist()},
|
1128 |
+
'image_stats': {
|
1129 |
+
'total': dataset.n,
|
1130 |
+
'unlabelled': int(np.all(x == 0, 1).sum()),
|
1131 |
+
'per_class': (x > 0).sum(0).tolist()},
|
1132 |
+
'labels': [{
|
1133 |
+
str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]}
|
1134 |
+
|
1135 |
+
# Save, print and return
|
1136 |
+
if save:
|
1137 |
+
stats_path = self.hub_dir / 'stats.json'
|
1138 |
+
print(f'Saving {stats_path.resolve()}...')
|
1139 |
+
with open(stats_path, 'w') as f:
|
1140 |
+
json.dump(self.stats, f) # save stats.json
|
1141 |
+
if verbose:
|
1142 |
+
print(json.dumps(self.stats, indent=2, sort_keys=False))
|
1143 |
+
return self.stats
|
1144 |
+
|
1145 |
+
def process_images(self):
|
1146 |
+
# Compress images for Ultralytics HUB
|
1147 |
+
for split in 'train', 'val', 'test':
|
1148 |
+
if self.data.get(split) is None:
|
1149 |
+
continue
|
1150 |
+
dataset = LoadImagesAndLabels(self.data[split]) # load dataset
|
1151 |
+
desc = f'{split} images'
|
1152 |
+
for _ in tqdm(ThreadPool(NUM_THREADS).imap(self._hub_ops, dataset.im_files), total=dataset.n, desc=desc):
|
1153 |
+
pass
|
1154 |
+
print(f'Done. All images saved to {self.im_dir}')
|
1155 |
+
return self.im_dir
|
1156 |
+
|
1157 |
+
|
1158 |
+
# Classification dataloaders -------------------------------------------------------------------------------------------
|
1159 |
+
class ClassificationDataset(torchvision.datasets.ImageFolder):
|
1160 |
+
"""
|
1161 |
+
YOLOv5 Classification Dataset.
|
1162 |
+
Arguments
|
1163 |
+
root: Dataset path
|
1164 |
+
transform: torchvision transforms, used by default
|
1165 |
+
album_transform: Albumentations transforms, used if installed
|
1166 |
+
"""
|
1167 |
+
|
1168 |
+
def __init__(self, root, augment, imgsz, cache=False):
|
1169 |
+
super().__init__(root=root)
|
1170 |
+
self.torch_transforms = classify_transforms(imgsz)
|
1171 |
+
self.album_transforms = classify_albumentations(augment, imgsz) if augment else None
|
1172 |
+
self.cache_ram = cache is True or cache == 'ram'
|
1173 |
+
self.cache_disk = cache == 'disk'
|
1174 |
+
self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im
|
1175 |
+
|
1176 |
+
def __getitem__(self, i):
|
1177 |
+
f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image
|
1178 |
+
if self.cache_ram and im is None:
|
1179 |
+
im = self.samples[i][3] = cv2.imread(f)
|
1180 |
+
elif self.cache_disk:
|
1181 |
+
if not fn.exists(): # load npy
|
1182 |
+
np.save(fn.as_posix(), cv2.imread(f))
|
1183 |
+
im = np.load(fn)
|
1184 |
+
else: # read image
|
1185 |
+
im = cv2.imread(f) # BGR
|
1186 |
+
if self.album_transforms:
|
1187 |
+
sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))["image"]
|
1188 |
+
else:
|
1189 |
+
sample = self.torch_transforms(im)
|
1190 |
+
return sample, j
|
1191 |
+
|
1192 |
+
|
1193 |
+
def create_classification_dataloader(path,
|
1194 |
+
imgsz=224,
|
1195 |
+
batch_size=16,
|
1196 |
+
augment=True,
|
1197 |
+
cache=False,
|
1198 |
+
rank=-1,
|
1199 |
+
workers=8,
|
1200 |
+
shuffle=True):
|
1201 |
+
# Returns Dataloader object to be used with YOLOv5 Classifier
|
1202 |
+
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
1203 |
+
dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
|
1204 |
+
batch_size = min(batch_size, len(dataset))
|
1205 |
+
nd = torch.cuda.device_count()
|
1206 |
+
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
|
1207 |
+
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
1208 |
+
generator = torch.Generator()
|
1209 |
+
generator.manual_seed(6148914691236517205 + RANK)
|
1210 |
+
return InfiniteDataLoader(dataset,
|
1211 |
+
batch_size=batch_size,
|
1212 |
+
shuffle=shuffle and sampler is None,
|
1213 |
+
num_workers=nw,
|
1214 |
+
sampler=sampler,
|
1215 |
+
pin_memory=PIN_MEMORY,
|
1216 |
+
worker_init_fn=seed_worker,
|
1217 |
+
generator=generator) # or DataLoader(persistent_workers=True)
|