Spaces:
Sleeping
Sleeping
Commit
·
6b1f333
1
Parent(s):
d0c450a
minor fix
Browse files- utils/lion.py +67 -0
utils/lion.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PyTorch implementation of the Lion optimizer."""
|
2 |
+
import torch
|
3 |
+
from torch.optim.optimizer import Optimizer
|
4 |
+
|
5 |
+
|
6 |
+
class Lion(Optimizer):
|
7 |
+
r"""Implements Lion algorithm."""
|
8 |
+
|
9 |
+
def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0):
|
10 |
+
"""Initialize the hyperparameters.
|
11 |
+
Args:
|
12 |
+
params (iterable): iterable of parameters to optimize or dicts defining
|
13 |
+
parameter groups
|
14 |
+
lr (float, optional): learning rate (default: 1e-4)
|
15 |
+
betas (Tuple[float, float], optional): coefficients used for computing
|
16 |
+
running averages of gradient and its square (default: (0.9, 0.99))
|
17 |
+
weight_decay (float, optional): weight decay coefficient (default: 0)
|
18 |
+
"""
|
19 |
+
|
20 |
+
if not 0.0 <= lr:
|
21 |
+
raise ValueError('Invalid learning rate: {}'.format(lr))
|
22 |
+
if not 0.0 <= betas[0] < 1.0:
|
23 |
+
raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0]))
|
24 |
+
if not 0.0 <= betas[1] < 1.0:
|
25 |
+
raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1]))
|
26 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
27 |
+
super().__init__(params, defaults)
|
28 |
+
|
29 |
+
@torch.no_grad()
|
30 |
+
def step(self, closure=None):
|
31 |
+
"""Performs a single optimization step.
|
32 |
+
Args:
|
33 |
+
closure (callable, optional): A closure that reevaluates the model
|
34 |
+
and returns the loss.
|
35 |
+
Returns:
|
36 |
+
the loss.
|
37 |
+
"""
|
38 |
+
loss = None
|
39 |
+
if closure is not None:
|
40 |
+
with torch.enable_grad():
|
41 |
+
loss = closure()
|
42 |
+
|
43 |
+
for group in self.param_groups:
|
44 |
+
for p in group['params']:
|
45 |
+
if p.grad is None:
|
46 |
+
continue
|
47 |
+
|
48 |
+
# Perform stepweight decay
|
49 |
+
p.data.mul_(1 - group['lr'] * group['weight_decay'])
|
50 |
+
|
51 |
+
grad = p.grad
|
52 |
+
state = self.state[p]
|
53 |
+
# State initialization
|
54 |
+
if len(state) == 0:
|
55 |
+
# Exponential moving average of gradient values
|
56 |
+
state['exp_avg'] = torch.zeros_like(p)
|
57 |
+
|
58 |
+
exp_avg = state['exp_avg']
|
59 |
+
beta1, beta2 = group['betas']
|
60 |
+
|
61 |
+
# Weight update
|
62 |
+
update = exp_avg * beta1 + grad * (1 - beta1)
|
63 |
+
p.add_(torch.sign(update), alpha=-group['lr'])
|
64 |
+
# Decay the momentum running average coefficient
|
65 |
+
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2)
|
66 |
+
|
67 |
+
return loss
|