AkashKhatri commited on
Commit
1346819
·
verified ·
1 Parent(s): 2b4cf47

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -85
app.py CHANGED
@@ -1,90 +1,67 @@
1
- # import gradio as gr
2
- # from huggingface_hub import InferenceClient
3
-
4
- # """
5
- # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- # """
7
- # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
- # # client = InferenceClient("meta-llama/Llama-2-7b-hf")
9
-
10
-
11
- # def respond(
12
- # message,
13
- # history: list[tuple[str, str]],
14
- # system_message,
15
- # max_tokens,
16
- # temperature,
17
- # top_p,
18
- # ):
19
- # messages = [{"role": "system", "content": system_message}]
20
-
21
- # for val in history:
22
- # if val[0]:
23
- # messages.append({"role": "user", "content": val[0]})
24
- # if val[1]:
25
- # messages.append({"role": "assistant", "content": val[1]})
26
-
27
- # messages.append({"role": "user", "content": message})
28
-
29
- # response = ""
30
-
31
- # for message in client.chat_completion(
32
- # messages,
33
- # max_tokens=max_tokens,
34
- # stream=True,
35
- # temperature=temperature,
36
- # top_p=top_p,
37
- # ):
38
- # token = message.choices[0].delta.content
39
-
40
- # response += token
41
- # yield response
42
-
43
- # """
44
- # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- # """
46
- # demo = gr.ChatInterface(
47
- # respond,
48
- # additional_inputs=[
49
- # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- # gr.Slider(
53
- # minimum=0.1,
54
- # maximum=1.0,
55
- # value=0.95,
56
- # step=0.05,
57
- # label="Top-p (nucleus sampling)",
58
- # ),
59
- # ],
60
- # )
61
-
62
-
63
- # if __name__ == "__main__":
64
- # demo.launch()
65
-
66
-
67
- # app.py
68
  import gradio as gr
69
- from chatbot import generate_response
70
-
71
- chat_histories = {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
- def chat(user_id, user_input):
74
- if user_id not in chat_histories:
75
- chat_histories[user_id] = []
76
 
77
- response, chat_histories[user_id] = generate_response(user_input, chat_histories[user_id])
78
- return response
79
 
80
- iface = gr.Interface(
81
- fn=chat,
82
- inputs=["text", "text"],
83
- outputs="text",
84
- live=True,
85
- title="BlenderBot Chatbot",
86
- description="Chat with BlenderBot, a state-of-the-art conversational model.",
87
- )
88
 
89
- if __name__ == "__main__":
90
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+ # client = InferenceClient("meta-llama/Llama-2-7b-hf")
9
+
10
+
11
+ def respond(
12
+ message,
13
+ history: list[tuple[str, str]],
14
+ system_message,
15
+ max_tokens,
16
+ temperature,
17
+ top_p,
18
+ ):
19
+ messages = [{"role": "system", "content": system_message}]
20
+
21
+ for val in history:
22
+ if val[0]:
23
+ messages.append({"role": "user", "content": val[0]})
24
+ if val[1]:
25
+ messages.append({"role": "assistant", "content": val[1]})
26
+
27
+ messages.append({"role": "user", "content": message})
28
+
29
+ response = ""
30
+
31
+ for message in client.chat_completion(
32
+ messages,
33
+ max_tokens=max_tokens,
34
+ stream=True,
35
+ temperature=temperature,
36
+ top_p=top_p,
37
+ ):
38
+ token = message.choices[0].delta.content
39
+
40
+ response += token
41
+ yield response
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
 
 
 
 
62
 
63
+ if __name__ == "__main__":
64
+ demo.launch()
65
 
 
 
 
 
 
 
 
 
66
 
67
+ app.py