AkashKhatri commited on
Commit
60d7655
·
verified ·
1 Parent(s): 0ac069e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -34
app.py CHANGED
@@ -1,13 +1,77 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
- client = InferenceClient("meta-llama/Llama-2-7b-hf")
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  def respond(
12
  message,
13
  history: list[tuple[str, str]],
@@ -16,33 +80,20 @@ def respond(
16
  temperature,
17
  top_p,
18
  ):
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- for val in history:
22
- if val[0]:
23
- messages.append({"role": "user", "content": val[0]})
24
- if val[1]:
25
- messages.append({"role": "assistant", "content": val[1]})
 
26
 
27
- messages.append({"role": "user", "content": message})
 
 
 
28
 
29
- response = ""
30
-
31
- for message in client.chat_completion(
32
- messages,
33
- max_tokens=max_tokens,
34
- stream=True,
35
- temperature=temperature,
36
- top_p=top_p,
37
- ):
38
- token = message.choices[0].delta.content
39
-
40
- response += token
41
- yield response
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
@@ -59,6 +110,5 @@ demo = gr.ChatInterface(
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ # import gradio as gr
2
+ # from huggingface_hub import InferenceClient
3
+
4
+ # """
5
+ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ # """
7
+ # # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+ # client = InferenceClient("meta-llama/Llama-2-7b-hf")
9
+
10
+
11
+ # def respond(
12
+ # message,
13
+ # history: list[tuple[str, str]],
14
+ # system_message,
15
+ # max_tokens,
16
+ # temperature,
17
+ # top_p,
18
+ # ):
19
+ # messages = [{"role": "system", "content": system_message}]
20
+
21
+ # for val in history:
22
+ # if val[0]:
23
+ # messages.append({"role": "user", "content": val[0]})
24
+ # if val[1]:
25
+ # messages.append({"role": "assistant", "content": val[1]})
26
+
27
+ # messages.append({"role": "user", "content": message})
28
+
29
+ # response = ""
30
+
31
+ # for message in client.chat_completion(
32
+ # messages,
33
+ # max_tokens=max_tokens,
34
+ # stream=True,
35
+ # temperature=temperature,
36
+ # top_p=top_p,
37
+ # ):
38
+ # token = message.choices[0].delta.content
39
+
40
+ # response += token
41
+ # yield response
42
 
43
+ # """
44
+ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ # """
46
+ # demo = gr.ChatInterface(
47
+ # respond,
48
+ # additional_inputs=[
49
+ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ # gr.Slider(
53
+ # minimum=0.1,
54
+ # maximum=1.0,
55
+ # value=0.95,
56
+ # step=0.05,
57
+ # label="Top-p (nucleus sampling)",
58
+ # ),
59
+ # ],
60
+ # )
61
 
62
 
63
+ # if __name__ == "__main__":
64
+ # demo.launch()
65
+
66
+ import gradio as gr
67
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
68
+
69
+ # Load the model and tokenizer
70
+ model_name = "meta-llama/Llama-2-7b-hf"
71
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
72
+ model = AutoModelForCausalLM.from_pretrained(model_name)
73
+ generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
74
+
75
  def respond(
76
  message,
77
  history: list[tuple[str, str]],
 
80
  temperature,
81
  top_p,
82
  ):
83
+ prompt = system_message + "\n"
84
+
85
+ for user_input, bot_response in history:
86
+ prompt += f"User: {user_input}\n"
87
+ if bot_response:
88
+ prompt += f"Bot: {bot_response}\n"
89
+
90
+ prompt += f"User: {message}\nBot:"
91
 
92
+ response = generator(prompt, max_length=max_tokens, temperature=temperature, top_p=top_p, num_return_sequences=1)
93
+ response_text = response[0]["generated_text"][len(prompt):]
94
+
95
+ return response_text
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  demo = gr.ChatInterface(
98
  respond,
99
  additional_inputs=[
 
110
  ],
111
  )
112
 
 
113
  if __name__ == "__main__":
114
+ demo.launch()