AkashKhatri commited on
Commit
6759ed7
·
verified ·
1 Parent(s): 4957f1f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -88
app.py CHANGED
@@ -1,80 +1,12 @@
1
- # import gradio as gr
2
- # from huggingface_hub import InferenceClient
3
-
4
- # """
5
- # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- # """
7
- # # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
- # client = InferenceClient("meta-llama/Llama-2-7b-hf")
9
-
10
-
11
- # def respond(
12
- # message,
13
- # history: list[tuple[str, str]],
14
- # system_message,
15
- # max_tokens,
16
- # temperature,
17
- # top_p,
18
- # ):
19
- # messages = [{"role": "system", "content": system_message}]
20
-
21
- # for val in history:
22
- # if val[0]:
23
- # messages.append({"role": "user", "content": val[0]})
24
- # if val[1]:
25
- # messages.append({"role": "assistant", "content": val[1]})
26
-
27
- # messages.append({"role": "user", "content": message})
28
-
29
- # response = ""
30
-
31
- # for message in client.chat_completion(
32
- # messages,
33
- # max_tokens=max_tokens,
34
- # stream=True,
35
- # temperature=temperature,
36
- # top_p=top_p,
37
- # ):
38
- # token = message.choices[0].delta.content
39
-
40
- # response += token
41
- # yield response
42
-
43
- # """
44
- # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- # """
46
- # demo = gr.ChatInterface(
47
- # respond,
48
- # additional_inputs=[
49
- # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- # gr.Slider(
53
- # minimum=0.1,
54
- # maximum=1.0,
55
- # value=0.95,
56
- # step=0.05,
57
- # label="Top-p (nucleus sampling)",
58
- # ),
59
- # ],
60
- # )
61
-
62
-
63
- # if __name__ == "__main__":
64
- # demo.launch()
65
-
66
  import gradio as gr
67
- from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
68
- import os
69
 
70
- # Access the Hugging Face API token from the environment variables
71
- api_token = os.getenv("HF_API_TOKEN")
 
 
 
72
 
73
- # Load the model and tokenizer with authentication
74
- model_name = "meta-llama/Llama-2-7b-hf"
75
- tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=api_token)
76
- model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=api_token)
77
- generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
78
 
79
  def respond(
80
  message,
@@ -84,20 +16,33 @@ def respond(
84
  temperature,
85
  top_p,
86
  ):
87
- prompt = system_message + "\n"
88
-
89
- for user_input, bot_response in history:
90
- prompt += f"User: {user_input}\n"
91
- if bot_response:
92
- prompt += f"Bot: {bot_response}\n"
93
-
94
- prompt += f"User: {message}\nBot:"
 
95
 
96
- response = generator(prompt, max_length=max_tokens, temperature=temperature, top_p=top_p, num_return_sequences=1)
97
- response_text = response[0]["generated_text"][len(prompt):]
98
-
99
- return response_text
100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  demo = gr.ChatInterface(
102
  respond,
103
  additional_inputs=[
@@ -114,7 +59,6 @@ demo = gr.ChatInterface(
114
  ],
115
  )
116
 
 
117
  if __name__ == "__main__":
118
  demo.launch()
119
-
120
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
 
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+ # client = InferenceClient("meta-llama/Llama-2-7b-hf")
9
 
 
 
 
 
 
10
 
11
  def respond(
12
  message,
 
16
  temperature,
17
  top_p,
18
  ):
19
+ messages = [{"role": "system", "content": system_message}]
20
+
21
+ for val in history:
22
+ if val[0]:
23
+ messages.append({"role": "user", "content": val[0]})
24
+ if val[1]:
25
+ messages.append({"role": "assistant", "content": val[1]})
26
+
27
+ messages.append({"role": "user", "content": message})
28
 
29
+ response = ""
 
 
 
30
 
31
+ for message in client.chat_completion(
32
+ messages,
33
+ max_tokens=max_tokens,
34
+ stream=True,
35
+ temperature=temperature,
36
+ top_p=top_p,
37
+ ):
38
+ token = message.choices[0].delta.content
39
+
40
+ response += token
41
+ yield response
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
 
59
  ],
60
  )
61
 
62
+
63
  if __name__ == "__main__":
64
  demo.launch()