Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,80 +1,12 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
# """
|
5 |
-
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
# """
|
7 |
-
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
# client = InferenceClient("meta-llama/Llama-2-7b-hf")
|
9 |
-
|
10 |
-
|
11 |
-
# def respond(
|
12 |
-
# message,
|
13 |
-
# history: list[tuple[str, str]],
|
14 |
-
# system_message,
|
15 |
-
# max_tokens,
|
16 |
-
# temperature,
|
17 |
-
# top_p,
|
18 |
-
# ):
|
19 |
-
# messages = [{"role": "system", "content": system_message}]
|
20 |
-
|
21 |
-
# for val in history:
|
22 |
-
# if val[0]:
|
23 |
-
# messages.append({"role": "user", "content": val[0]})
|
24 |
-
# if val[1]:
|
25 |
-
# messages.append({"role": "assistant", "content": val[1]})
|
26 |
-
|
27 |
-
# messages.append({"role": "user", "content": message})
|
28 |
-
|
29 |
-
# response = ""
|
30 |
-
|
31 |
-
# for message in client.chat_completion(
|
32 |
-
# messages,
|
33 |
-
# max_tokens=max_tokens,
|
34 |
-
# stream=True,
|
35 |
-
# temperature=temperature,
|
36 |
-
# top_p=top_p,
|
37 |
-
# ):
|
38 |
-
# token = message.choices[0].delta.content
|
39 |
-
|
40 |
-
# response += token
|
41 |
-
# yield response
|
42 |
-
|
43 |
-
# """
|
44 |
-
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
# """
|
46 |
-
# demo = gr.ChatInterface(
|
47 |
-
# respond,
|
48 |
-
# additional_inputs=[
|
49 |
-
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
# gr.Slider(
|
53 |
-
# minimum=0.1,
|
54 |
-
# maximum=1.0,
|
55 |
-
# value=0.95,
|
56 |
-
# step=0.05,
|
57 |
-
# label="Top-p (nucleus sampling)",
|
58 |
-
# ),
|
59 |
-
# ],
|
60 |
-
# )
|
61 |
-
|
62 |
-
|
63 |
-
# if __name__ == "__main__":
|
64 |
-
# demo.launch()
|
65 |
-
|
66 |
import gradio as gr
|
67 |
-
from
|
68 |
-
import os
|
69 |
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
72 |
|
73 |
-
# Load the model and tokenizer with authentication
|
74 |
-
model_name = "meta-llama/Llama-2-7b-hf"
|
75 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=api_token)
|
76 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=api_token)
|
77 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
78 |
|
79 |
def respond(
|
80 |
message,
|
@@ -84,20 +16,33 @@ def respond(
|
|
84 |
temperature,
|
85 |
top_p,
|
86 |
):
|
87 |
-
|
88 |
-
|
89 |
-
for
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
95 |
|
96 |
-
response =
|
97 |
-
response_text = response[0]["generated_text"][len(prompt):]
|
98 |
-
|
99 |
-
return response_text
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
demo = gr.ChatInterface(
|
102 |
respond,
|
103 |
additional_inputs=[
|
@@ -114,7 +59,6 @@ demo = gr.ChatInterface(
|
|
114 |
],
|
115 |
)
|
116 |
|
|
|
117 |
if __name__ == "__main__":
|
118 |
demo.launch()
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
+
# client = InferenceClient("meta-llama/Llama-2-7b-hf")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def respond(
|
12 |
message,
|
|
|
16 |
temperature,
|
17 |
top_p,
|
18 |
):
|
19 |
+
messages = [{"role": "system", "content": system_message}]
|
20 |
+
|
21 |
+
for val in history:
|
22 |
+
if val[0]:
|
23 |
+
messages.append({"role": "user", "content": val[0]})
|
24 |
+
if val[1]:
|
25 |
+
messages.append({"role": "assistant", "content": val[1]})
|
26 |
+
|
27 |
+
messages.append({"role": "user", "content": message})
|
28 |
|
29 |
+
response = ""
|
|
|
|
|
|
|
30 |
|
31 |
+
for message in client.chat_completion(
|
32 |
+
messages,
|
33 |
+
max_tokens=max_tokens,
|
34 |
+
stream=True,
|
35 |
+
temperature=temperature,
|
36 |
+
top_p=top_p,
|
37 |
+
):
|
38 |
+
token = message.choices[0].delta.content
|
39 |
+
|
40 |
+
response += token
|
41 |
+
yield response
|
42 |
+
|
43 |
+
"""
|
44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
|
|
59 |
],
|
60 |
)
|
61 |
|
62 |
+
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
|