AkashKhatri commited on
Commit
6c9199f
·
verified ·
1 Parent(s): 5ca11e5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -54
app.py CHANGED
@@ -1,65 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
- # client = InferenceClient("meta-llama/Llama-2-7b-hf")
9
-
10
-
11
- def respond(
12
- message,
13
- history: list[tuple[str, str]],
14
- system_message,
15
- max_tokens,
16
- temperature,
17
- top_p,
18
- ):
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- for val in history:
22
- if val[0]:
23
- messages.append({"role": "user", "content": val[0]})
24
- if val[1]:
25
- messages.append({"role": "assistant", "content": val[1]})
26
-
27
- messages.append({"role": "user", "content": message})
28
-
29
- response = ""
30
-
31
- for message in client.chat_completion(
32
- messages,
33
- max_tokens=max_tokens,
34
- stream=True,
35
- temperature=temperature,
36
- top_p=top_p,
37
- ):
38
- token = message.choices[0].delta.content
39
-
40
- response += token
41
- yield response
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
65
-
 
1
+ # import gradio as gr
2
+ # from huggingface_hub import InferenceClient
3
+
4
+ # """
5
+ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ # """
7
+ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+ # # client = InferenceClient("meta-llama/Llama-2-7b-hf")
9
+
10
+
11
+ # def respond(
12
+ # message,
13
+ # history: list[tuple[str, str]],
14
+ # system_message,
15
+ # max_tokens,
16
+ # temperature,
17
+ # top_p,
18
+ # ):
19
+ # messages = [{"role": "system", "content": system_message}]
20
+
21
+ # for val in history:
22
+ # if val[0]:
23
+ # messages.append({"role": "user", "content": val[0]})
24
+ # if val[1]:
25
+ # messages.append({"role": "assistant", "content": val[1]})
26
+
27
+ # messages.append({"role": "user", "content": message})
28
+
29
+ # response = ""
30
+
31
+ # for message in client.chat_completion(
32
+ # messages,
33
+ # max_tokens=max_tokens,
34
+ # stream=True,
35
+ # temperature=temperature,
36
+ # top_p=top_p,
37
+ # ):
38
+ # token = message.choices[0].delta.content
39
+
40
+ # response += token
41
+ # yield response
42
+
43
+ # """
44
+ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ # """
46
+ # demo = gr.ChatInterface(
47
+ # respond,
48
+ # additional_inputs=[
49
+ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ # gr.Slider(
53
+ # minimum=0.1,
54
+ # maximum=1.0,
55
+ # value=0.95,
56
+ # step=0.05,
57
+ # label="Top-p (nucleus sampling)",
58
+ # ),
59
+ # ],
60
+ # )
61
+
62
+
63
+ # if __name__ == "__main__":
64
+ # demo.launch()
65
+
66
+
67
+
68
  import gradio as gr
69
+ from chatbot import generate_response
70
+
71
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
72
+ response, updated_history = generate_response(message, history)
73
+ return response, updated_history
74
+
75
+ # Create Gradio Interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  demo = gr.ChatInterface(
77
+ fn=respond,
78
  additional_inputs=[
79
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
80
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
81
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
82
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
83
  ],
84
+ inputs=["text", "state", "state", "number", "number", "number"],
85
+ outputs=["text", "state"],
86
+ title="Chatbot with BlenderBot",
87
+ description="A chatbot interface using the facebook/blenderbot-400M-distill model."
88
  )
89
 
 
90
  if __name__ == "__main__":
91
  demo.launch()