AkashKhatri commited on
Commit
c39ccb2
·
verified ·
1 Parent(s): d913abd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -101
app.py CHANGED
@@ -1,105 +1,64 @@
1
- # import gradio as gr
2
- # from huggingface_hub import InferenceClient
3
-
4
- # """
5
- # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- # """
7
- # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
- # # client = InferenceClient("meta-llama/Llama-2-7b-hf")
9
-
10
-
11
- # def respond(
12
- # message,
13
- # history: list[tuple[str, str]],
14
- # system_message,
15
- # max_tokens,
16
- # temperature,
17
- # top_p,
18
- # ):
19
- # messages = [{"role": "system", "content": system_message}]
20
-
21
- # for val in history:
22
- # if val[0]:
23
- # messages.append({"role": "user", "content": val[0]})
24
- # if val[1]:
25
- # messages.append({"role": "assistant", "content": val[1]})
26
-
27
- # messages.append({"role": "user", "content": message})
28
-
29
- # response = ""
30
-
31
- # for message in client.chat_completion(
32
- # messages,
33
- # max_tokens=max_tokens,
34
- # stream=True,
35
- # temperature=temperature,
36
- # top_p=top_p,
37
- # ):
38
- # token = message.choices[0].delta.content
39
-
40
- # response += token
41
- # yield response
42
-
43
- # """
44
- # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- # """
46
- # demo = gr.ChatInterface(
47
- # respond,
48
- # additional_inputs=[
49
- # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- # gr.Slider(
53
- # minimum=0.1,
54
- # maximum=1.0,
55
- # value=0.95,
56
- # step=0.05,
57
- # label="Top-p (nucleus sampling)",
58
- # ),
59
- # ],
60
- # )
61
-
62
-
63
- # if __name__ == "__main__":
64
- # demo.launch()
65
-
66
-
67
-
68
  import gradio as gr
69
- from chatbot import generate_response
70
-
71
- def respond(message, history, system_message, max_tokens, temperature, top_p):
72
- response, updated_history = generate_response(message, history)
73
- return response, updated_history
74
-
75
- # Create Gradio Interface
76
- demo = gr.Blocks()
77
-
78
- with demo:
79
- gr.Markdown("# Chatbot with BlenderBot")
80
-
81
- with gr.Row():
82
- system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message")
83
- max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
84
- temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
85
- top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
86
-
87
- chatbot = gr.Chatbot(label="Chatbot Interface")
88
- state = gr.State([])
89
-
90
- with gr.Row():
91
- user_input = gr.Textbox(placeholder="Type a message...", show_label=False)
92
- submit_btn = gr.Button("Submit")
93
-
94
- def submit_message(user_input, history, system_message, max_tokens, temperature, top_p):
95
- response, history = respond(user_input, history, system_message, max_tokens, temperature, top_p)
96
- return gr.update(chatbot=history), history
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
- submit_btn.click(
99
- submit_message,
100
- inputs=[user_input, state, system_message, max_tokens, temperature, top_p],
101
- outputs=[chatbot, state]
102
- )
103
 
104
  if __name__ == "__main__":
105
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+ # client = InferenceClient("meta-llama/Llama-2-7b-hf")
9
+
10
+
11
+ def respond(
12
+ message,
13
+ history: list[tuple[str, str]],
14
+ system_message,
15
+ max_tokens,
16
+ temperature,
17
+ top_p,
18
+ ):
19
+ messages = [{"role": "system", "content": system_message}]
20
+
21
+ for val in history:
22
+ if val[0]:
23
+ messages.append({"role": "user", "content": val[0]})
24
+ if val[1]:
25
+ messages.append({"role": "assistant", "content": val[1]})
26
+
27
+ messages.append({"role": "user", "content": message})
28
+
29
+ response = ""
30
+
31
+ for message in client.chat_completion(
32
+ messages,
33
+ max_tokens=max_tokens,
34
+ stream=True,
35
+ temperature=temperature,
36
+ top_p=top_p,
37
+ ):
38
+ token = message.choices[0].delta.content
39
+
40
+ response += token
41
+ yield response
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
+ demo.launch()