Spaces:
Running
Running
import os | |
import gradio as gr | |
import numpy as np | |
import random | |
from huggingface_hub import InferenceClient # Replaced AsyncInferenceClient with InferenceClient | |
from translatepy import Translator | |
import requests | |
import re | |
from PIL import Image | |
from gradio_client import Client, handle_file | |
from huggingface_hub import login | |
from gradio_imageslider import ImageSlider | |
MAX_SEED = np.iinfo(np.int32).max | |
def enable_lora(lora_add, basemodel): | |
return basemodel if not lora_add else lora_add | |
def generate_image(prompt, model, lora_word, width, height, scales, steps, seed): | |
try: | |
if seed == -1: | |
seed = random.randint(0, MAX_SEED) | |
print(seed) | |
seed = int(seed) | |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word | |
client = InferenceClient() # Using synchronous client instead of async | |
image = client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model) | |
return image, seed | |
except Exception as e: | |
print(f"Error generating image: {e}") | |
return None, None | |
def get_upscale_finegrain(prompt, img_path, upscale_factor): | |
try: | |
client = Client("finegrain/finegrain-image-enhancer") | |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process") | |
return result[1] | |
except Exception as e: | |
print(f"Error upscaling image: {e}") | |
return None | |
def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): | |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel | |
image, seed = generate_image(prompt, model, "", width, height, scales, steps, seed) | |
if image is None: | |
return [None, None] | |
image_path = "temp_image.jpg" | |
image.save(image_path, format="JPEG") | |
if process_upscale: | |
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor) | |
if upscale_image_path is not None: | |
upscale_image = Image.open(upscale_image_path) | |
upscale_image.save("upscale_image.jpg", format="JPEG") | |
return [image_path, "upscale_image.jpg"] | |
else: | |
print("Error: The scaled image path is None") | |
return [image_path, image_path] | |
else: | |
return [image_path, image_path] | |
css = """ | |
#col-container{ margin: 0 auto; max-width: 1024px;} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
with gr.Column(scale=3): | |
output_res = ImageSlider(label="Flux / Upscaled") | |
with gr.Column(scale=2): | |
prompt = gr.Textbox(label="Image Description") | |
basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "hakker-Labs/FLUX.1-dev-LoRA-add-details"], value="black-forest-labs/FLUX.1-schnell") | |
lora_model_choice = gr.Dropdown(label="LoRA", choices=["XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora") | |
process_lora = gr.Checkbox(label="LoRA Process") | |
process_upscale = gr.Checkbox(label="Scale Process") | |
upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2) | |
with gr.Accordion(label="Advanced Options", open=False): | |
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280) | |
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1280) | |
scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=4) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=4) | |
seed = gr.Number(label="Seed", value=-1) | |
btn = gr.Button("Generate") | |
btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,) | |
demo.launch() |