File size: 3,685 Bytes
6004edc
 
 
 
 
 
 
f1c4b50
6004edc
 
f1c4b50
6004edc
 
 
f1c4b50
6004edc
 
 
 
 
 
 
 
 
 
 
f1c4b50
6004edc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1c4b50
 
6004edc
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import datetime
import gradio as gr
from huggingface_hub import hf_hub_download
from langdetect import detect, DetectorFactory, detect_langs
import fasttext
from transformers import pipeline

models = {'en': 'Narsil/deberta-large-mnli-zero-cls'} #Uzbek


hypothesis_templates = {'en': 'This example is {}.'} # Uzbek
                       
                        
classifiers = {'en': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['en'],
                              model=models['en'])}

fasttext_model = fasttext.load_model(hf_hub_download("julien-c/fasttext-language-id", "lid.176.bin"))

def prep_examples():
    example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \
    people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \
    However, some will become seriously ill and require medical attention."
    example_labels1 = "business,health related,politics,climate change"

    
    examples = [
        [example_text1, example_labels1]
        ]

    return examples

def detect_lang(sequence, labels):
    DetectorFactory.seed = 0
    seq_lang = 'en'

    try:
        #seq_lang = detect(sequence)
        #lbl_lang = detect(labels)
        seq_lang = fasttext_model.predict(sequence, k=1)[0][0].split("__label__")[1]
        lbl_lang = fasttext_model.predict(labels, k=1)[0][0].split("__label__")[1]
    except:
        print("Language detection failed!",
              "Date:{}, Sequence:{}, Labels:{}".format(
                  str(datetime.datetime.now()),
                  labels))

    if seq_lang != lbl_lang:
        print("Different languages detected for sequence and labels!",
              "Date:{}, Sequence:{}, Labels:{}, Sequence Language:{}, Label Language:{}".format(
                  str(datetime.datetime.now()),
                  sequence,
                  labels,
                  seq_lang,
                  lbl_lang))

    if seq_lang in models:
        print("Sequence Language detected.",
              "Date:{}, Sequence:{}, Sequence Language:{}".format(
                  str(datetime.datetime.now()),
                  sequence,
                  seq_lang))
    else:
        print("Language not supported. Defaulting to English!",
              "Date:{}, Sequence:{}, Sequence Language:{}".format(
                  str(datetime.datetime.now()),
                  sequence,
                  seq_lang))
        seq_lang = 'en'

    return seq_lang

def sequence_to_classify(sequence, labels):
    classifier = classifiers[detect_lang(sequence, labels)]

    label_clean = str(labels).split(",")
    response = classifier(sequence, label_clean, multi_label=True)

    predicted_labels = response['labels']
    predicted_scores = response['scores']
    clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels}
    print("Date:{}, Sequence:{}, Labels: {}".format(
        str(datetime.datetime.now()),
        sequence,
        predicted_labels))

    return clean_output

iface = gr.Interface(
    title="En Multi-label Zero-shot Classification",
    description="Supported languages are: English",
    fn=sequence_to_classify,
    inputs=[gr.inputs.Textbox(lines=10,
        label="Please enter the text you would like to classify...",
        placeholder="Text here..."),
        gr.inputs.Textbox(lines=2,
        label="Please enter the candidate labels (separated by comma)...",
        placeholder="Labels here separated by comma...")],
    outputs=gr.outputs.Label(num_top_classes=5),
    #interpretation="default",
    examples=prep_examples())

iface.launch()