AkhilPJ commited on
Commit
9b23f15
·
1 Parent(s): 29e3698

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -18
app.py CHANGED
@@ -1,13 +1,9 @@
1
  import gradio as gr
2
 
3
- # Output and Imput
4
  input_1 = gr.inputs.Textbox(label = "Input Text")
5
  input_2 = gr.inputs.Image(label = "Input Image")
6
-
7
  output_1 = gr.outputs.Textbox(label = "Predicted Housing Prices")
8
  output_2 = gr.outputs.Image(label = "Visualization of the location")
9
-
10
- # Creating Sliders
11
  input_longitude = gr.inputs.Slider(-124.35, 114.35, step=1, label = "Longitude")
12
  input_latitude = gr.inputs.Slider(32, 41, step=1, label = "Latitude")
13
  input_housing_median = gr.inputs.Slider(1, 52, step=1, label = "Housing_median")
@@ -17,22 +13,14 @@ input_population = gr.inputs.Slider(10, 35678, step=1, label = "Population")
17
  input_households = gr.inputs.Slider(10, 6081, step=1, label = "Households")
18
  input_median_income = gr.inputs.Slider(0, 15, step=0.1, label = "Median_income")
19
 
20
- # Define a new function that accommodates the input modules.
21
  def multi_inputs(input_longitude, input_latitude, input_housing_median, input_total_rooms, input_total_bedrooms, input_population, input_households, input_median_income):
22
  import numpy as np
23
- ## processing inputs
24
 
25
- ## return outputs
26
- output1 = "Processing inputs and return outputs" # text output example
27
- output2 = np.random.rand(6,6) # image-like array output example
28
  return output1,output2
29
 
30
- # Define a new function that accommodates the input modules.
31
- def multi_inputs(input_longitude, input_latitude, input_housing_median, input_total_rooms, input_total_bedrooms, input_population, input_households, input_median_income):
32
- import numpy as np
33
- ## processing inputs
34
-
35
- ## return outputs
36
- output1 = "Processing inputs and return outputs" # text output example
37
- output2 = np.random.rand(6,6) # image-like array output example
38
- return output1,output2
 
1
  import gradio as gr
2
 
 
3
  input_1 = gr.inputs.Textbox(label = "Input Text")
4
  input_2 = gr.inputs.Image(label = "Input Image")
 
5
  output_1 = gr.outputs.Textbox(label = "Predicted Housing Prices")
6
  output_2 = gr.outputs.Image(label = "Visualization of the location")
 
 
7
  input_longitude = gr.inputs.Slider(-124.35, 114.35, step=1, label = "Longitude")
8
  input_latitude = gr.inputs.Slider(32, 41, step=1, label = "Latitude")
9
  input_housing_median = gr.inputs.Slider(1, 52, step=1, label = "Housing_median")
 
13
  input_households = gr.inputs.Slider(10, 6081, step=1, label = "Households")
14
  input_median_income = gr.inputs.Slider(0, 15, step=0.1, label = "Median_income")
15
 
 
16
  def multi_inputs(input_longitude, input_latitude, input_housing_median, input_total_rooms, input_total_bedrooms, input_population, input_households, input_median_income):
17
  import numpy as np
18
+ import pandas as pd
19
 
20
+ output1 = "Processing inputs and return outputs"
21
+ output2 = np.random.rand(6,6)
 
22
  return output1,output2
23
 
24
+ gr.Interface(fn=multi_inputs, inputs=[input_longitude, input_latitude, input_housing_median, input_total_rooms, input_total_bedrooms, input_population, input_households, input_median_income],
25
+ outputs=[output_1, output_2]
26
+ ).launch()