Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fashion_mnist = keras.datasets.fashion_mnist
|
2 |
+
(x_train_full, y_train_full), (x_test, y_test) = fashion_mnist.load_data()
|
3 |
+
|
4 |
+
x_valid, x_train = x_train_full[:5000], x_train_full[5000:]
|
5 |
+
y_valid, y_train = y_train_full[:5000], y_train_full[5000:]
|
6 |
+
|
7 |
+
x_train.shape
|
8 |
+
import matplotlib as mpl
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
plt.figure(figsize=(14,12))
|
11 |
+
|
12 |
+
plt.subplot(3,3,1)
|
13 |
+
some_image = x_train[0]
|
14 |
+
plt.imshow(some_image, cmap=mpl.cm.binary)
|
15 |
+
|
16 |
+
plt.subplot(3,3,2)
|
17 |
+
some_image = x_train[1]
|
18 |
+
plt.imshow(some_image, cmap=mpl.cm.binary)
|
19 |
+
|
20 |
+
plt.subplot(3,3,3)
|
21 |
+
some_image = x_train[2]
|
22 |
+
plt.imshow(some_image, cmap=mpl.cm.binary)
|
23 |
+
|
24 |
+
plt.subplot(3,3,4)
|
25 |
+
some_image = x_train[3]
|
26 |
+
plt.imshow(some_image, cmap=mpl.cm.binary)
|
27 |
+
|
28 |
+
plt.subplot(3,3,5)
|
29 |
+
some_image = x_train[4]
|
30 |
+
plt.imshow(some_image, cmap=mpl.cm.binary)
|
31 |
+
|
32 |
+
plt.subplot(3,3,6)
|
33 |
+
some_image = x_train[5]
|
34 |
+
plt.imshow(some_image, cmap=mpl.cm.binary)
|
35 |
+
|
36 |
+
plt.subplot(3,3,7)
|
37 |
+
some_image = x_train[6]
|
38 |
+
plt.imshow(some_image, cmap=mpl.cm.binary)
|
39 |
+
|
40 |
+
plt.subplot(3,3,8)
|
41 |
+
some_image = x_train[7]
|
42 |
+
plt.imshow(some_image, cmap=mpl.cm.binary)
|
43 |
+
|
44 |
+
plt.subplot(3,3,9)
|
45 |
+
some_image = x_train[8]
|
46 |
+
plt.imshow(some_image, cmap=mpl.cm.binary)
|
47 |
+
|
48 |
+
plt.show()
|
49 |
+
|
50 |
+
class_names = ["T-shirt/top","Trouser","Pullover", "Dress","Coat","Sandals","Shirt","Sneaker","Bag","Ankle boot"]
|
51 |
+
class_names[y_train[3]]
|
52 |
+
|
53 |
+
pd_y_train = pd.DataFrame(y_train)
|
54 |
+
|
55 |
+
frequency = pd_y_train.value_counts()
|
56 |
+
category = frequency.index.tolist()
|
57 |
+
counts = frequency.values.tolist()
|
58 |
+
# Visualization of train set
|
59 |
+
frequency.plot(kind='bar')
|
60 |
+
plt.title ('Bar plot')
|
61 |
+
plt.xlabel ('Category')
|
62 |
+
plt.ylabel ('Frequency')
|
63 |
+
|
64 |
+
img_shape = x_train.shape
|
65 |
+
n_samples = img_shape[0]
|
66 |
+
width = img_shape[1]
|
67 |
+
height = img_shape[2]
|
68 |
+
|
69 |
+
print("n_samples: ",n_samples)
|
70 |
+
print("width: ",width)
|
71 |
+
print("height: ",height)
|
72 |
+
|
73 |
+
#flatten each 2d mnist image into 1d array and checing dimensions
|
74 |
+
x_train_flatten = x_train.reshape(n_samples, width*height)
|
75 |
+
print("x_train_flatten.shape: ",x_train_flatten.shape)
|
76 |
+
from sklearn.preprocessing import StandardScaler
|
77 |
+
from sklearn.neighbors import KNeighborsClassifier
|
78 |
+
|
79 |
+
# feature scaling
|
80 |
+
standardscaler = StandardScaler()
|
81 |
+
X_train_scale = standardscaler.fit_transform(x_train_flatten)
|
82 |
+
|
83 |
+
# import KNN classifier from sklearn
|
84 |
+
KNN_classifier_scale = KNeighborsClassifier(n_neighbors=5)
|
85 |
+
KNN_classifier_scale. fit(X_train_scale,y_train)
|
86 |
+
|
87 |
+
X_test_stand = standardscaler.transform(x_test_flatten)
|
88 |
+
y_pred = KNN_classifier_scale.predict(X_test_stand)
|
89 |
+
# Cross validation
|
90 |
+
from sklearn.model_selection import cross_val_score
|
91 |
+
from sklearn.neighbors import KNeighborsClassifier
|
92 |
+
|
93 |
+
# define one KNN model
|
94 |
+
KNN_classifier = KNeighborsClassifier(n_neighbors=5, metric = 'euclidean')
|
95 |
+
|
96 |
+
# call cross-val_score
|
97 |
+
CV_scores = cross_val_score(estimator = KNN_classifier, X = x_train_flatten, y = y_train, cv = 3, scoring = 'accuracy')
|
98 |
+
print("CV_scores: ", CV_scores)
|
99 |
+
# Training
|
100 |
+
|
101 |
+
from sklearn.model_selection import cross_val_score
|
102 |
+
from sklearn.neighbors import KNeighborsClassifier
|
103 |
+
|
104 |
+
import time
|
105 |
+
start = time.time()
|
106 |
+
|
107 |
+
KNN_classifier = KNeighborsClassifier(n_neighbors=5, metric = 'euclidean')
|
108 |
+
KNN_classifier.fit(x_train_flatten, y_train)
|
109 |
+
y_valid_predicted_label = KNN_classifier.predict(x_valid_flatten)
|
110 |
+
|
111 |
+
end = time.time()
|
112 |
+
time_duration = end-start
|
113 |
+
print("Program finishes in {} seconds:".format(time_duration))
|
114 |
+
# Saving the data
|
115 |
+
from joblib import dump, load
|
116 |
+
dump(KNN_classifier, 'KNN_fashionmnist.joblib')
|
117 |
+
# loading the data
|
118 |
+
KNN_classifier = load('KNN_fashionmnist.joblib')
|
119 |
+
|
120 |
+
# organize the predicted classes and actual classes into Pandas dataframe
|
121 |
+
summary = pd.DataFrame({'predection':y_valid_predicted_label,'Original':y_valid})
|
122 |
+
summary
|
123 |
+
|
124 |
+
# Overall accuracy of the validation predictions
|
125 |
+
from sklearn import metrics
|
126 |
+
metrics.accuracy_score(y_valid,y_valid_predicted_label)
|
127 |
+
|
128 |
+
# Calculate the per-class accuracy of the predictions
|
129 |
+
from sklearn.metrics import confusion_matrix
|
130 |
+
matrix = confusion_matrix(y_valid,y_valid_predicted_label)
|
131 |
+
accuracy_score = matrix.diagonal()/matrix.sum(axis=1)
|
132 |
+
|
133 |
+
print('accuracy of t-shirt is',accuracy_score[0])
|
134 |
+
print('accuracy of Trouser is',accuracy_score[1])
|
135 |
+
print('accuracy of pullover is',accuracy_score[2])
|
136 |
+
print('accuracy of Dress is',accuracy_score[3])
|
137 |
+
print('accuracy of coat is',accuracy_score[4])
|
138 |
+
print('accuracy of sandal is',accuracy_score[5])
|
139 |
+
print('accuracy of shirt is',accuracy_score[6])
|
140 |
+
print('accuracy of sneaker is',accuracy_score[7])
|
141 |
+
print('accuracy of bag is',accuracy_score[8])
|
142 |
+
print('accuracy of boot is',accuracy_score[9])
|
143 |
+
|
144 |
+
# visualize the classification confusion matrix to check the details of the validation predictions for each class
|
145 |
+
import matplotlib.pyplot as plt
|
146 |
+
from sklearn.metrics import ConfusionMatrixDisplay
|
147 |
+
ConfusionMatrixDisplay.from_predictions(y_valid, y_valid_predicted_label)
|
148 |
+
plt.title("Classification Confusion matrix")
|
149 |
+
plt.show()
|
150 |
+
|
151 |
+
# Task 4.1.9 Different K values, and select the best model that has highest validation accuracy
|
152 |
+
# visualize the classification confusion matrix on the test set to report the details of predictions over every class
|
153 |
+
from sklearn.neighbors import KNeighborsClassifier
|
154 |
+
KNN_classifier = KNeighborsClassifier(n_neighbors=3, metric = 'euclidean')
|
155 |
+
KNN_classifier.fit(x_train_flatten, y_train)
|
156 |
+
y_valid_predicted_label = KNN_classifier.predict(x_valid_flatten)
|
157 |
+
|
158 |
+
y_valid_predicted_label
|
159 |
+
from sklearn import metrics
|
160 |
+
metrics.accuracy_score(y_valid, y_valid_predicted_label)
|
161 |
+
|
162 |
+
import matplotlib.pyplot as plt
|
163 |
+
from sklearn.metrics import ConfusionMatrixDisplay
|
164 |
+
ConfusionMatrixDisplay.from_predictions(y_test, y_test_pred)
|
165 |
+
plt.title("classifiaction confusion matrix")
|
166 |
+
plt.show()
|
167 |
+
# Task 4.1.10: Calculate the overall accuracy of the predictions over validation set and test set using the best model
|
168 |
+
from sklearn import metrics
|
169 |
+
metrics.accuracy_score(y_test, y_test_pred)
|
170 |
+
# discriminant analysis
|
171 |
+
import numpy as np
|
172 |
+
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
|
173 |
+
clf = LinearDiscriminantAnalysis()
|
174 |
+
clf.fit(x_train_flatten, y_train)
|
175 |
+
|
176 |
+
start = time.time()
|
177 |
+
predicted_labels = clf.predict(x_valid_flatten)
|
178 |
+
end = time.time()
|
179 |
+
time_duration = end-start
|
180 |
+
print("Program finishes in {} seconds:".format(time_duration))
|
181 |
+
|
182 |
+
y_test_pred = clf.predict(x_test_flatten)
|
183 |
+
print("Accuracy of testing Set: ", metrics.accuracy_score(y_test, y_test_pred))
|
184 |
+
y_valid_pred = clf.predict(x_valid_flatten)
|
185 |
+
print("Accuracy of validation Set: ", metrics.accuracy_score(y_valid, y_valid_pred))
|
186 |
+
|
187 |
+
from sklearn.metrics import confusion_matrix
|
188 |
+
matrix = confusion_matrix(y_test,y_test_pred)
|
189 |
+
accuracy_score = matrix.diagonal()/matrix.sum(axis=1)
|
190 |
+
|
191 |
+
print('accuracy of t-shirt is',accuracy_score[0])
|
192 |
+
print('accuracy of Trouser is',accuracy_score[1])
|
193 |
+
print('accuracy of pullover is',accuracy_score[2])
|
194 |
+
print('accuracy of Dress is',accuracy_score[3])
|
195 |
+
print('accuracy of coat is',accuracy_score[4])
|
196 |
+
print('accuracy of sandal is',accuracy_score[5])
|
197 |
+
print('accuracy of shirt is',accuracy_score[6])
|
198 |
+
print('accuracy of sneaker is',accuracy_score[7])
|
199 |
+
print('accuracy of bag is',accuracy_score[8])
|
200 |
+
print('accuracy of boot is',accuracy_score[9])
|
201 |
+
|
202 |
+
from gradio.outputs import Label
|
203 |
+
import gradio as gr
|
204 |
+
import cv2
|
205 |
+
import tensorflow as tf
|
206 |
+
|
207 |
+
def caption(image,input_module1):
|
208 |
+
class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
|
209 |
+
"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
|
210 |
+
image=image.reshape(1,28*28)
|
211 |
+
if input_module1=="KNN":
|
212 |
+
output1=KNN_classifier.predict(image)[0]
|
213 |
+
predictions=KNN_classifier.predict_proba(image)[0]
|
214 |
+
|
215 |
+
elif input_module1==("Linear discriminant analysis"):
|
216 |
+
output1=clf.predict(image)[0]
|
217 |
+
predictions=clf.predict_proba(image)[0]
|
218 |
+
|
219 |
+
elif input_module1==("Quadratic discriminant analysis"):
|
220 |
+
output1=qda.predict(image)[0]
|
221 |
+
predictions=qda.predict_proba(image)[0]
|
222 |
+
|
223 |
+
elif input_module1=="Naive Bayes classifier":
|
224 |
+
output1=gnb.predict(image)[0]
|
225 |
+
predictions=gnb.predict_proba(image)[0]
|
226 |
+
|
227 |
+
output2 = {}
|
228 |
+
|
229 |
+
for i in range(len(predictions)):
|
230 |
+
output2[class_names[i]] = predictions[i]
|
231 |
+
return output1 ,output2
|
232 |
+
|
233 |
+
input_module = gr.inputs.Image(label = "Input Image",image_mode="L",shape=(28,28))
|
234 |
+
input_module1 = gr.inputs.Dropdown(choices=["KNN","Linear discriminant analysis", "Quadratic discriminant analysis","Naive Bayes classifier"], label = "Method")
|
235 |
+
output1 = gr.outputs.Textbox(label = "Predicted Class")
|
236 |
+
output2=gr.outputs.Label(label= "probability of class")
|
237 |
+
gr.Interface(fn=caption, inputs=[input_module,input_module1], outputs=[output1,output2]).launch(debug=True)
|