AkimfromParis commited on
Commit
427f576
·
verified ·
1 Parent(s): 197aba7

Delete sidebar for easy read

Browse files
Files changed (1) hide show
  1. app.py +248 -249
app.py CHANGED
@@ -1,249 +1,248 @@
1
- import os, sys
2
- import streamlit as st
3
-
4
- st.set_page_config(page_title="Pricing for scalar and binary embeddings", page_icon=":floppy-disk:", layout="wide", initial_sidebar_state="expanded", menu_items={'Report a bug': "mailto:[email protected]"})
5
-
6
- # SIDEBAR
7
- st.sidebar.write('***"Exit float32, hello binary!"***')
8
-
9
- cloud_price = st.sidebar.slider("Price of the instance: ", 0.0,20.00,3.8)
10
- st.sidebar.write("*From 0 to 20 (default $3.8 per GB/mo estimated on x2gd instances on AWS)*")
11
-
12
- st.sidebar.divider() ###
13
-
14
- docs = st.sidebar.slider("Number of vector embeddings: ", 100000000,1000000000,250000000, step=10000000) #Defaul 250M
15
- st.sidebar.write("*From 100M to 1 Billion (default 250M)*")
16
-
17
- st.sidebar.write(" ")
18
-
19
- st.sidebar.write("***Akim Mousterou*** (April 2024) *[LinkedIn](https://www.linkedin.com/in/akim-mousterou/),[HuggingFace](https://huggingface.co/Akimfromparis), and [GitHub](https://github.com/AkimParis)*")
20
- kb2gb = 1024**3 #Conversion memory
21
- # MAIN
22
- st.title("***Pricing model on billion-scale vector with scalar and binary embeddings***")
23
-
24
- st.write("*The real democratization of AI can only be achieved by a powerful open-source ecosystem and low prices for memory/GPU usage.*")
25
- st.write("*Compression-friendly embedding models implemented in int8 and binary can save up to x4 and x32 of memory, storage, and, costs. To achieve X32 compute efficiency and retain ∼96% of retrieval performance, the binary quantization is powered by the normalization of embedding values (either 0 or 1), the calculation of Hamming Distance with only 2 CPU runtimes, and the application of ReRank step of [Yamada et al (2021)](https://arxiv.org/abs/2106.00882).*")
26
- st.write('*Scalar and binary embeddings revealed great retrieval efficiency with just a minimal degradation of performance, perfect for NLP downstream tasks, semantic search, recommendation systems, and retrieval-augmented generation solutions. The following financial projections are based on ["Cohere int8 & binary Embeddings - Scale Your Vector Database to Large Datasets"](https://cohere.com/blog/int8-binary-embeddings) by Nils Reimers of [Cohere](https://cohere.com/). The cost of the index and the metadata might not have been factored in the calculus.*')
27
-
28
- col1, col2, col3, col4, col5, col6, col7, col8 = st.columns([1,1,1,1,1,1,1,1])
29
- with col1:
30
- st.write("***Embedding dimension***")
31
- st.divider() ###
32
- st.write("***384***")
33
- st.write("***512***")
34
- st.write("***768***")
35
- st.write("***1024***")
36
- st.write("***1536***")
37
- st.write("***2048***")
38
- st.write("***3072***")
39
- st.write("***4096***")
40
- with col2:
41
- st.write("***Memory usage in Gb***")
42
- st.divider() ###
43
- dim_1 = ((384 * 4) * docs) / kb2gb
44
- st.write(str(round(dim_1, 2)) + " GB")
45
-
46
- dim_2 = ((512 * 4) * docs) / kb2gb
47
- r = st.write(str(round(dim_2, 2)) + " GB")
48
-
49
- dim_3 = ((768 * 4) * docs) / kb2gb
50
- r = st.write(str(round(dim_3, 2)) + " GB")
51
-
52
- dim_4 = ((1024 * 4) * docs) / kb2gb
53
- r = st.write(str(round(dim_4, 2)) + " GB")
54
-
55
- dim_5 = ((1536 * 4) * docs) / kb2gb
56
- r = st.write(str(round(dim_5, 2)) + " GB")
57
-
58
- dim_6 = ((2048 * 4) * docs) / kb2gb
59
- r = st.write(str(round(dim_6, 2)) + " GB")
60
-
61
- dim_7 = ((3072 * 4) * docs) / kb2gb
62
- r = st.write(str(round(dim_7, 2)) + " GB")
63
-
64
- dim_8 = ((4096 * 4) * docs) / kb2gb
65
- r = st.write(str(round(dim_8, 2)) + " GB")
66
-
67
- with col3:
68
- st.write("***$ Price by month***")
69
- st.divider() ###
70
- price_month_1 = dim_1 * cloud_price
71
- st.write(str(round(price_month_1, 2)) + " $")
72
-
73
- price_month_2 = dim_2 * cloud_price
74
- st.write(str(round(price_month_2, 2)) + " $")
75
-
76
- price_month_3 = dim_3 * cloud_price
77
- st.write(str(round(price_month_3, 2)) + " $")
78
-
79
- price_month_4 = dim_4 * cloud_price
80
- st.write(str(round(price_month_4, 2)) + " $")
81
-
82
- price_month_5 = dim_5 * cloud_price
83
- st.write(str(round(price_month_5, 2)) + " $")
84
-
85
- price_month_6 = dim_6 * cloud_price
86
- st.write(str(round(price_month_6, 2)) + " $")
87
-
88
- price_month_7 = dim_7 * cloud_price
89
- st.write(str(round(price_month_7, 2)) + " $")
90
-
91
- price_month_8 = dim_8 * cloud_price
92
- st.write(str(round(price_month_8, 2)) + " $")
93
-
94
- with col4:
95
- st.write("***$ Price by year***")
96
- st.divider() ###
97
- price_year_1 = price_month_1 * 12
98
- st.write(str(round(price_year_1, 2)) + " $")
99
-
100
- price_year_2 = price_month_2 * 12
101
- st.write(str(round(price_year_2, 2)) + " $")
102
-
103
- price_year_3 = price_month_3 * 12
104
- st.write(str(round(price_year_3, 2)) + " $")
105
-
106
- price_year_4 = price_month_4 * 12
107
- st.write(str(round(price_year_4, 2)) + " $")
108
-
109
- price_year_5 = price_month_5 * 12
110
- st.write(str(round(price_year_5, 2)) + " $")
111
-
112
- price_year_6 = price_month_6 * 12
113
- st.write(str(round(price_year_6, 2)) + " $")
114
-
115
- price_year_7 = price_month_7 * 12
116
- st.write(str(round(price_year_7, 2)) + " $")
117
-
118
- price_year_8 = price_month_8 * 12
119
- st.write(str(round(price_year_8, 2)) + " $")
120
-
121
- with col5:
122
- st.write("***Int8 memory*** (div. 4)")
123
- st.divider() ###
124
- int8_mem_1 = dim_1 / 4
125
- st.write(str(round(int8_mem_1, 2)) + " GB")
126
-
127
- int8_mem_2 = dim_2 / 4
128
- st.write(str(round(int8_mem_2, 2)) + " GB")
129
-
130
- int8_mem_3 = dim_3 / 4
131
- st.write(str(round(int8_mem_3, 2)) + " GB")
132
-
133
- int8_mem_4 = dim_4 / 4
134
- st.write(str(round(int8_mem_4, 2)) + " GB")
135
-
136
- int8_mem_5 = dim_5 / 4
137
- st.write(str(round(int8_mem_5, 2)) + " GB")
138
-
139
- int8_mem_6 = dim_6 / 4
140
- st.write(str(round(int8_mem_6, 2)) + " GB")
141
-
142
- int8_mem_7 = dim_7 / 4
143
- st.write(str(round(int8_mem_7, 2)) + " GB")
144
-
145
- int8_mem_8 = dim_8 / 4
146
- st.write(str(round(int8_mem_8, 2)) + " GB")
147
- with col6:
148
- st.write("***$ Int8 price*** (div. 4)")
149
- st.divider() ###
150
- int8_price_1 = price_month_1 / 4
151
- st.write(str(round(int8_price_1, 2)) + " $")
152
-
153
- int8_price_2 = price_month_2 / 4
154
- st.write(str(round(int8_price_2, 2)) + " $")
155
-
156
- int8_price_3 = price_month_3 / 4
157
- st.write(str(round(int8_price_3, 2)) + " $")
158
-
159
- int8_price_4 = price_month_4 / 4
160
- st.write(str(round(int8_price_4, 2)) + " $")
161
-
162
- int8_price_5 = price_month_5 / 4
163
- st.write(str(round(int8_price_5, 2)) + " $")
164
-
165
- int8_price_6 = price_month_6 / 4
166
- st.write(str(round(int8_price_6, 2)) + " $")
167
-
168
- int8_price_7 = price_month_7 / 4
169
- st.write(str(round(int8_price_7, 2)) + " $")
170
-
171
- int8_price_8 = price_month_8 / 4
172
- st.write(str(round(int8_price_8, 2)) + " $")
173
-
174
- with col7:
175
- st.write("***Bin memory*** (div. 32)")
176
- st.divider() ###
177
- binary_mem_1 = dim_1 / 32
178
- st.write(str(round(binary_mem_1, 2)) + " GB")
179
-
180
- binary_mem_2 = dim_2 / 32
181
- st.write(str(round(binary_mem_2, 2)) + " GB")
182
-
183
- binary_mem_3 = dim_3 / 32
184
- st.write(str(round(binary_mem_3, 2)) + " GB")
185
-
186
- binary_mem_4 = dim_4 / 32
187
- st.write(str(round(binary_mem_4, 2)) + " GB")
188
-
189
- binary_mem_5 = dim_5 / 32
190
- st.write(str(round(binary_mem_5, 2)) + " GB")
191
-
192
- binary_mem_6 = dim_6 / 32
193
- st.write(str(round(binary_mem_6, 2)) + " GB")
194
-
195
- binary_mem_7 = dim_7 / 32
196
- st.write(str(round(binary_mem_7, 2)) + " GB")
197
-
198
- binary_mem_8 = dim_8 / 32
199
- st.write(str(round(binary_mem_8, 2)) + " GB")
200
-
201
- with col8:
202
- st.write("***$ Bin price*** (div. 32)")
203
- st.divider() ###
204
- binary_price_1 = price_month_1 / 32
205
- st.write(str(round(binary_price_1, 2)) + " $")
206
-
207
- binary_price_2 = price_month_2 / 32
208
- st.write(str(round(binary_price_2, 2)) + " $")
209
-
210
- binary_price_3 = price_month_3 / 32
211
- st.write(str(round(binary_price_3, 2)) + " $")
212
-
213
- binary_price_4 = price_month_4 / 32
214
- st.write(str(round(binary_price_4, 2)) + " $")
215
-
216
- binary_price_5 = price_month_5 / 32
217
- st.write(str(round(binary_price_5, 2)) + " $")
218
-
219
- binary_price_6 = price_month_6 / 32
220
- st.write(str(round(binary_price_6, 2)) + " $")
221
-
222
- binary_price_7 = price_month_7 / 32
223
- st.write(str(round(binary_price_7, 2)) + " $")
224
-
225
- binary_price_8 = price_month_8 / 32
226
- st.write(str(round(binary_price_8, 2)) + " $")
227
- st.divider() ###
228
- st.write("***- Open-source vector databases for Scalar and binary quantization:***")
229
- col9, col10 = st.columns([1,1])
230
- with col9:
231
- st.write("- [FAISS](https://github.com/facebookresearch/faiss) from :flag-us:")
232
- st.write("- [VESPA AI](https://github.com/vespa-engine/vespa) from :flag-no:")
233
- st.write("- [Pgvector](https://github.com/pgvector/pgvector) from :flag-us:")
234
- st.write("- [Milvus](https://github.com/milvus-io/milvus) from :flag-cn:")
235
- st.write("- [Usearch](https://github.com/unum-cloud/usearch) from :flag-us:")
236
- with col10:
237
- st.write("- [Qdrant](https://github.com/qdrant) from :flag-de:")
238
- st.write("- [pgvecto.rs](https://github.com/tensorchord/pgvecto.rs) from :flag-cn:")
239
- st.write("- [TencentVectorDB](https://github.com/Tencent/vectordatabase-sdk-python) from :flag-cn:")
240
- st.write("- [BinaryVectorDB](https://github.com/cohere-ai/BinaryVectorDB) from :flag-ca:")
241
- st.write("- [Weaviate](https://github.com/weaviate/weaviate) from :flag-de:")
242
- st.divider() ###
243
- st.write("***- For further readings:***")
244
-
245
- st.write("- [Billion-scale similarity search with GPUs](https://arxiv.org/abs/1702.08734)")
246
- st.write("- [Efficient Passage Retrieval with Hashing for Open-domain Question Answering](https://arxiv.org/abs/2106.00882)")
247
- st.write("- [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147)")
248
- st.write("- [Incorporating Relevance Feedback for Information-Seeking Retrieval using Few-Shot Document Re-Ranking](https://arxiv.org/abs/2210.10695)")
249
- st.write("- [Binary Embedding-based Retrieval at Tencent](https://arxiv.org/abs/2302.08714)")
 
1
+ import os, sys
2
+ import streamlit as st
3
+
4
+ st.set_page_config(page_title="Pricing for scalar and binary embeddings", page_icon=":floppy-disk:", layout="wide", menu_items={'Report a bug': "mailto:[email protected]"})
5
+
6
+ kb2gb = 1024**3 #Conversion memory
7
+
8
+ # MAIN
9
+ st.title("***Pricing model with scalar and binary embeddings***")
10
+ st.write("***Akim Mousterou*** (April 2024) *[LinkedIn](https://www.linkedin.com/in/akim-mousterou/), [HuggingFace](https://huggingface.co/Akimfromparis), and [GitHub](https://github.com/AkimParis)*")
11
+
12
+ st.write("*The real democratization of AI can only be achieved by a powerful open-source ecosystem and low prices for memory/GPU usage. Thanks to quantization, we can say bye to float32, and hello binary! Compression-friendly embedding models implemented in int8 and binary can save up to x4 and x32 of memory, storage, and, costs. To achieve X32 compute efficiency and retain ∼96% of retrieval performance, the binary quantization is powered by the normalization of embedding values (either 0 or 1), the calculation of Hamming Distance with only 2 CPU runtimes, and the application of ReRank step of [Yamada et al (2021)](https://arxiv.org/abs/2106.00882). Scalar and binary embeddings revealed great retrieval efficiency with just a minimal degradation of performance, perfect for NLP downstream tasks, semantic search, recommendation systems, and retrieval-augmented generation solutions.*")
13
+ st.divider() ###
14
+ col1, col2 = st.columns([1,1])
15
+ with col1:
16
+ cloud_price = st.slider("Price of the instance: *From 0 to 20 (default $3.8 per GB/mo estimated on x2gd instances on AWS)* ", 0.0,20.00,3.8)
17
+ with col2:
18
+ docs = st.slider("Number of vector embeddings: *From 100M to 1 Billion (default 250M)*", 100000000,1000000000,250000000, step=10000000) #Defaul 250M
19
+ st.divider() ###
20
+ col3, col4, col5, col6, col7, col8, col9, col10 = st.columns([1,1,1,1,1,1,1,1])
21
+ with col3:
22
+ st.write("***Embedding dimension***")
23
+ with col4:
24
+ st.write("***Memory usage in Gb***")
25
+ with col5:
26
+ st.write("***Price on a monthly basis***")
27
+ with col6:
28
+ st.write("***Price on a yearly basis***")
29
+ with col7:
30
+ st.write("***Int8 memory*** (div. by 4)")
31
+ with col8:
32
+ st.write("***Int8 price*** (div. by 4)")
33
+ with col9:
34
+ st.write("***Binary memory*** (div. by 32)")
35
+ with col10:
36
+ st.write("***Binary price*** (div. by 32)")
37
+
38
+ col11, col12, col13, col14, col15, col16, col17, col18 = st.columns([1,1,1,1,1,1,1,1])
39
+ with col11:
40
+ st.write("***384***")
41
+ st.write("***512***")
42
+ st.write("***768***")
43
+ st.write("***1024***")
44
+ st.write("***1536***")
45
+ st.write("***2048***")
46
+ st.write("***3072***")
47
+ st.write("***4096***")
48
+ with col12:
49
+ dim_1 = ((384 * 4) * docs) / kb2gb
50
+ st.write(str(round(dim_1, 2)) + " GB")
51
+
52
+ dim_2 = ((512 * 4) * docs) / kb2gb
53
+ r = st.write(str(round(dim_2, 2)) + " GB")
54
+
55
+ dim_3 = ((768 * 4) * docs) / kb2gb
56
+ r = st.write(str(round(dim_3, 2)) + " GB")
57
+
58
+ dim_4 = ((1024 * 4) * docs) / kb2gb
59
+ r = st.write(str(round(dim_4, 2)) + " GB")
60
+
61
+ dim_5 = ((1536 * 4) * docs) / kb2gb
62
+ r = st.write(str(round(dim_5, 2)) + " GB")
63
+
64
+ dim_6 = ((2048 * 4) * docs) / kb2gb
65
+ r = st.write(str(round(dim_6, 2)) + " GB")
66
+
67
+ dim_7 = ((3072 * 4) * docs) / kb2gb
68
+ r = st.write(str(round(dim_7, 2)) + " GB")
69
+
70
+ dim_8 = ((4096 * 4) * docs) / kb2gb
71
+ r = st.write(str(round(dim_8, 2)) + " GB")
72
+
73
+ with col13:
74
+ price_month_1 = dim_1 * cloud_price
75
+ st.write(str(round(price_month_1, 2)) + " $")
76
+
77
+ price_month_2 = dim_2 * cloud_price
78
+ st.write(str(round(price_month_2, 2)) + " $")
79
+
80
+ price_month_3 = dim_3 * cloud_price
81
+ st.write(str(round(price_month_3, 2)) + " $")
82
+
83
+ price_month_4 = dim_4 * cloud_price
84
+ st.write(str(round(price_month_4, 2)) + " $")
85
+
86
+ price_month_5 = dim_5 * cloud_price
87
+ st.write(str(round(price_month_5, 2)) + " $")
88
+
89
+ price_month_6 = dim_6 * cloud_price
90
+ st.write(str(round(price_month_6, 2)) + " $")
91
+
92
+ price_month_7 = dim_7 * cloud_price
93
+ st.write(str(round(price_month_7, 2)) + " $")
94
+
95
+ price_month_8 = dim_8 * cloud_price
96
+ st.write(str(round(price_month_8, 2)) + " $")
97
+
98
+ with col14:
99
+ price_year_1 = price_month_1 * 12
100
+ st.write(str(round(price_year_1, 2)) + " $")
101
+
102
+ price_year_2 = price_month_2 * 12
103
+ st.write(str(round(price_year_2, 2)) + " $")
104
+
105
+ price_year_3 = price_month_3 * 12
106
+ st.write(str(round(price_year_3, 2)) + " $")
107
+
108
+ price_year_4 = price_month_4 * 12
109
+ st.write(str(round(price_year_4, 2)) + " $")
110
+
111
+ price_year_5 = price_month_5 * 12
112
+ st.write(str(round(price_year_5, 2)) + " $")
113
+
114
+ price_year_6 = price_month_6 * 12
115
+ st.write(str(round(price_year_6, 2)) + " $")
116
+
117
+ price_year_7 = price_month_7 * 12
118
+ st.write(str(round(price_year_7, 2)) + " $")
119
+
120
+ price_year_8 = price_month_8 * 12
121
+ st.write(str(round(price_year_8, 2)) + " $")
122
+
123
+ with col15:
124
+ int8_mem_1 = dim_1 / 4
125
+ st.write(str(round(int8_mem_1, 2)) + " GB")
126
+
127
+ int8_mem_2 = dim_2 / 4
128
+ st.write(str(round(int8_mem_2, 2)) + " GB")
129
+
130
+ int8_mem_3 = dim_3 / 4
131
+ st.write(str(round(int8_mem_3, 2)) + " GB")
132
+
133
+ int8_mem_4 = dim_4 / 4
134
+ st.write(str(round(int8_mem_4, 2)) + " GB")
135
+
136
+ int8_mem_5 = dim_5 / 4
137
+ st.write(str(round(int8_mem_5, 2)) + " GB")
138
+
139
+ int8_mem_6 = dim_6 / 4
140
+ st.write(str(round(int8_mem_6, 2)) + " GB")
141
+
142
+ int8_mem_7 = dim_7 / 4
143
+ st.write(str(round(int8_mem_7, 2)) + " GB")
144
+
145
+ int8_mem_8 = dim_8 / 4
146
+ st.write(str(round(int8_mem_8, 2)) + " GB")
147
+ with col16:
148
+ int8_price_1 = price_month_1 / 4
149
+ st.write(str(round(int8_price_1, 2)) + " $")
150
+
151
+ int8_price_2 = price_month_2 / 4
152
+ st.write(str(round(int8_price_2, 2)) + " $")
153
+
154
+ int8_price_3 = price_month_3 / 4
155
+ st.write(str(round(int8_price_3, 2)) + " $")
156
+
157
+ int8_price_4 = price_month_4 / 4
158
+ st.write(str(round(int8_price_4, 2)) + " $")
159
+
160
+ int8_price_5 = price_month_5 / 4
161
+ st.write(str(round(int8_price_5, 2)) + " $")
162
+
163
+ int8_price_6 = price_month_6 / 4
164
+ st.write(str(round(int8_price_6, 2)) + " $")
165
+
166
+ int8_price_7 = price_month_7 / 4
167
+ st.write(str(round(int8_price_7, 2)) + " $")
168
+
169
+ int8_price_8 = price_month_8 / 4
170
+ st.write(str(round(int8_price_8, 2)) + " $")
171
+
172
+ with col17:
173
+ binary_mem_1 = dim_1 / 32
174
+ st.write(str(round(binary_mem_1, 2)) + " GB")
175
+
176
+ binary_mem_2 = dim_2 / 32
177
+ st.write(str(round(binary_mem_2, 2)) + " GB")
178
+
179
+ binary_mem_3 = dim_3 / 32
180
+ st.write(str(round(binary_mem_3, 2)) + " GB")
181
+
182
+ binary_mem_4 = dim_4 / 32
183
+ st.write(str(round(binary_mem_4, 2)) + " GB")
184
+
185
+ binary_mem_5 = dim_5 / 32
186
+ st.write(str(round(binary_mem_5, 2)) + " GB")
187
+
188
+ binary_mem_6 = dim_6 / 32
189
+ st.write(str(round(binary_mem_6, 2)) + " GB")
190
+
191
+ binary_mem_7 = dim_7 / 32
192
+ st.write(str(round(binary_mem_7, 2)) + " GB")
193
+
194
+ binary_mem_8 = dim_8 / 32
195
+ st.write(str(round(binary_mem_8, 2)) + " GB")
196
+
197
+ with col18:
198
+ binary_price_1 = price_month_1 / 32
199
+ st.write(str(round(binary_price_1, 2)) + " $")
200
+
201
+ binary_price_2 = price_month_2 / 32
202
+ st.write(str(round(binary_price_2, 2)) + " $")
203
+
204
+ binary_price_3 = price_month_3 / 32
205
+ st.write(str(round(binary_price_3, 2)) + " $")
206
+
207
+ binary_price_4 = price_month_4 / 32
208
+ st.write(str(round(binary_price_4, 2)) + " $")
209
+
210
+ binary_price_5 = price_month_5 / 32
211
+ st.write(str(round(binary_price_5, 2)) + " $")
212
+
213
+ binary_price_6 = price_month_6 / 32
214
+ st.write(str(round(binary_price_6, 2)) + " $")
215
+
216
+ binary_price_7 = price_month_7 / 32
217
+ st.write(str(round(binary_price_7, 2)) + " $")
218
+
219
+ binary_price_8 = price_month_8 / 32
220
+ st.write(str(round(binary_price_8, 2)) + " $")
221
+
222
+ st.write('***Disclaimer:*** *The financial projections below are based on ["Cohere int8 & binary Embeddings - Scale Your Vector Database to Large Datasets"](https://cohere.com/blog/int8-binary-embeddings) by Nils Reimers of [Cohere](https://cohere.com/). The cost of the index and the metadata might not have been factored in the calculus.*')
223
+
224
+ st.divider() ###
225
+ st.write("***- Open-source vector databases for Scalar and binary quantization:***")
226
+ col19, col20 = st.columns([1,1])
227
+ with col19:
228
+ st.write("- [FAISS](https://github.com/facebookresearch/faiss) from :flag-us:")
229
+ st.write("- [VESPA AI](https://github.com/vespa-engine/vespa) from :flag-no:")
230
+ st.write("- [Pgvector](https://github.com/pgvector/pgvector) from :flag-us:")
231
+ st.write("- [Milvus](https://github.com/milvus-io/milvus) from :flag-cn:")
232
+ st.write("- [Usearch](https://github.com/unum-cloud/usearch) from :flag-us:")
233
+ with col20:
234
+ st.write("- [Qdrant](https://github.com/qdrant) from :flag-de:")
235
+ st.write("- [pgvecto.rs](https://github.com/tensorchord/pgvecto.rs) from :flag-cn:")
236
+ st.write("- [TencentVectorDB](https://github.com/Tencent/vectordatabase-sdk-python) from :flag-cn:")
237
+ st.write("- [BinaryVectorDB](https://github.com/cohere-ai/BinaryVectorDB) from :flag-ca:")
238
+ st.write("- [Weaviate](https://github.com/weaviate/weaviate) from :flag-de:")
239
+ st.divider() ###
240
+ st.write("***- For further readings:***")
241
+
242
+ st.write("- [Billion-scale similarity search with GPUs](https://arxiv.org/abs/1702.08734)")
243
+ st.write("- [Efficient Passage Retrieval with Hashing for Open-domain Question Answering](https://arxiv.org/abs/2106.00882)")
244
+ st.write("- [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147)")
245
+ st.write("- [Incorporating Relevance Feedback for Information-Seeking Retrieval using Few-Shot Document Re-Ranking](https://arxiv.org/abs/2210.10695)")
246
+ st.write("- [Binary Embedding-based Retrieval at Tencent](https://arxiv.org/abs/2302.08714)")
247
+ st.divider() ###
248
+ st.write("***Akim Mousterou*** (April 2024) *[LinkedIn](https://www.linkedin.com/in/akim-mousterou/), [HuggingFace](https://huggingface.co/Akimfromparis), and [GitHub](https://github.com/AkimParis)*")