File size: 6,346 Bytes
a9ae318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75daa3f
a9ae318
 
 
75daa3f
a9ae318
 
 
 
 
 
 
 
 
 
 
 
 
 
168c01f
a9ae318
 
 
 
 
 
 
 
 
 
0094274
 
a9ae318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75daa3f
a9ae318
 
 
 
 
 
 
 
 
 
 
 
 
 
75daa3f
a9ae318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
import cv2
import torch
import os
import time
import glob

from diffusers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    HeunDiscreteScheduler,
    KDPM2DiscreteScheduler,
    KDPM2AncestralDiscreteScheduler,
    LMSDiscreteScheduler,
    UniPCMultistepScheduler,
)

TEMP_DIR = "temp_images"
FILE_RETENTION_PERIOD = 3600 
os.makedirs(TEMP_DIR, exist_ok=True)

def cleanup_old_files():
    """Delete old temporary files"""
    current_time = time.time()
    pattern = os.path.join(TEMP_DIR, "output_*.png")
    
    for file_path in glob.glob(pattern):
        try:
            file_modified_time = os.path.getmtime(file_path)
            if current_time - file_modified_time > FILE_RETENTION_PERIOD:
                os.remove(file_path)
        except Exception as e:
            print(f"Error while cleaning up file {file_path}: {e}")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

pipe = StableDiffusionXLPipeline.from_single_file(
    "https://huggingface.co/SeaArtLab/SeaArt-Furry-XL-1.0/blob/main/furry-xl-4.0.safetensors",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sampler_name):
 
    cleanup_old_files()

    if sampler_name == "DDIM":
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "DPMSolverMultistep":
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "Euler":
        pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "EulerAncestral":
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "Heun":
        pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "KDPM2":
        pipe.scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "KDPM2Ancestral":
        pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "LMS":
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
    elif sampler_name == "UniPC":
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
    else:
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    output_image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]

    if output_image.mode != 'RGB':
        output_image = output_image.convert('RGB')
    
    timestamp = int(time.time())
    temp_filename = os.path.join(TEMP_DIR, f"output_{timestamp}.png")
    output_image.save(temp_filename)
    
    return temp_filename

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
         T2I FurryStyle BetaVer""")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)

        result = gr.Image(
            label="Result",
            show_label=False,
            type="filepath", 
            elem_id="output_image"
        )
        
        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            sampler_name = gr.Dropdown(
                label="Sampler",
                choices=["DDIM", "DPMSolverMultistep", "Euler", "EulerAncestral", "Heun", "KDPM2", "KDPM2Ancestral", "LMS", "UniPC"],
                value="EulerAncestral",
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=4,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=28,
                    step=1,
                    value=28,
                )

    run_button.click(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sampler_name],
        outputs=[result]
    )

cleanup_old_files()

demo.queue().launch()