Spaces:
Running
on
Zero
Running
on
Zero
from functools import partial | |
import torch | |
from torch import nn, einsum, Tensor | |
from torch.nn import Module, ModuleList | |
import torch.nn.functional as F | |
from bs_roformer.attend import Attend | |
from typing import Tuple, Optional, List, Callable | |
# from beartype.typing import Tuple, Optional, List, Callable | |
# from beartype import beartype | |
from rotary_embedding_torch import RotaryEmbedding | |
from einops import rearrange, pack, unpack | |
from einops.layers.torch import Rearrange | |
# helper functions | |
def exists(val): | |
return val is not None | |
def default(v, d): | |
return v if exists(v) else d | |
def pack_one(t, pattern): | |
return pack([t], pattern) | |
def unpack_one(t, ps, pattern): | |
return unpack(t, ps, pattern)[0] | |
# norm | |
def l2norm(t): | |
return F.normalize(t, dim = -1, p = 2) | |
class RMSNorm(Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.scale = dim ** 0.5 | |
self.gamma = nn.Parameter(torch.ones(dim)) | |
def forward(self, x): | |
return F.normalize(x, dim=-1) * self.scale * self.gamma | |
# attention | |
class FeedForward(Module): | |
def __init__( | |
self, | |
dim, | |
mult=4, | |
dropout=0. | |
): | |
super().__init__() | |
dim_inner = int(dim * mult) | |
self.net = nn.Sequential( | |
RMSNorm(dim), | |
nn.Linear(dim, dim_inner), | |
nn.GELU(), | |
nn.Dropout(dropout), | |
nn.Linear(dim_inner, dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Attention(Module): | |
def __init__( | |
self, | |
dim, | |
heads=8, | |
dim_head=64, | |
dropout=0., | |
rotary_embed=None, | |
flash=True | |
): | |
super().__init__() | |
self.heads = heads | |
self.scale = dim_head ** -0.5 | |
dim_inner = heads * dim_head | |
self.rotary_embed = rotary_embed | |
self.attend = Attend(flash=flash, dropout=dropout) | |
self.norm = RMSNorm(dim) | |
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False) | |
self.to_gates = nn.Linear(dim, heads) | |
self.to_out = nn.Sequential( | |
nn.Linear(dim_inner, dim, bias=False), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
x = self.norm(x) | |
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads) | |
if exists(self.rotary_embed): | |
q = self.rotary_embed.rotate_queries_or_keys(q) | |
k = self.rotary_embed.rotate_queries_or_keys(k) | |
out = self.attend(q, k, v) | |
gates = self.to_gates(x) | |
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid() | |
out = rearrange(out, 'b h n d -> b n (h d)') | |
return self.to_out(out) | |
class LinearAttention(Module): | |
""" | |
this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al. | |
""" | |
# @beartype | |
def __init__( | |
self, | |
*, | |
dim, | |
dim_head=32, | |
heads=8, | |
scale=8, | |
flash=False, | |
dropout=0. | |
): | |
super().__init__() | |
dim_inner = dim_head * heads | |
self.norm = RMSNorm(dim) | |
self.to_qkv = nn.Sequential( | |
nn.Linear(dim, dim_inner * 3, bias=False), | |
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads) | |
) | |
self.temperature = nn.Parameter(torch.ones(heads, 1, 1)) | |
self.attend = Attend( | |
scale=scale, | |
dropout=dropout, | |
flash=flash | |
) | |
self.to_out = nn.Sequential( | |
Rearrange('b h d n -> b n (h d)'), | |
nn.Linear(dim_inner, dim, bias=False) | |
) | |
def forward( | |
self, | |
x | |
): | |
x = self.norm(x) | |
q, k, v = self.to_qkv(x) | |
q, k = map(l2norm, (q, k)) | |
q = q * self.temperature.exp() | |
out = self.attend(q, k, v) | |
return self.to_out(out) | |
class Transformer(Module): | |
def __init__( | |
self, | |
*, | |
dim, | |
depth, | |
dim_head=64, | |
heads=8, | |
attn_dropout=0., | |
ff_dropout=0., | |
ff_mult=4, | |
norm_output=True, | |
rotary_embed=None, | |
flash_attn=True, | |
linear_attn=False | |
): | |
super().__init__() | |
self.layers = ModuleList([]) | |
for _ in range(depth): | |
if linear_attn: | |
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn) | |
else: | |
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, | |
rotary_embed=rotary_embed, flash=flash_attn) | |
self.layers.append(ModuleList([ | |
attn, | |
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout) | |
])) | |
self.norm = RMSNorm(dim) if norm_output else nn.Identity() | |
def forward(self, x): | |
for attn, ff in self.layers: | |
x = attn(x) + x | |
x = ff(x) + x | |
return self.norm(x) | |
# bandsplit module | |
class BandSplit(Module): | |
# @beartype | |
def __init__( | |
self, | |
dim, | |
dim_inputs: Tuple[int, ...] | |
): | |
super().__init__() | |
self.dim_inputs = dim_inputs | |
self.to_features = ModuleList([]) | |
for dim_in in dim_inputs: | |
net = nn.Sequential( | |
RMSNorm(dim_in), | |
nn.Linear(dim_in, dim) | |
) | |
self.to_features.append(net) | |
def forward(self, x): | |
x = x.split(self.dim_inputs, dim=-1) | |
outs = [] | |
for split_input, to_feature in zip(x, self.to_features): | |
split_output = to_feature(split_input) | |
outs.append(split_output) | |
return torch.stack(outs, dim=-2) | |
def MLP( | |
dim_in, | |
dim_out, | |
dim_hidden=None, | |
depth=1, | |
activation=nn.Tanh | |
): | |
dim_hidden = default(dim_hidden, dim_in) | |
net = [] | |
dims = (dim_in, *((dim_hidden,) * (depth - 1)), dim_out) | |
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])): | |
is_last = ind == (len(dims) - 2) | |
net.append(nn.Linear(layer_dim_in, layer_dim_out)) | |
if is_last: | |
continue | |
net.append(activation()) | |
return nn.Sequential(*net) | |
class MaskEstimator(Module): | |
# @beartype | |
def __init__( | |
self, | |
dim, | |
dim_inputs: Tuple[int, ...], | |
depth, | |
mlp_expansion_factor=4 | |
): | |
super().__init__() | |
self.dim_inputs = dim_inputs | |
self.to_freqs = ModuleList([]) | |
dim_hidden = dim * mlp_expansion_factor | |
for dim_in in dim_inputs: | |
net = [] | |
mlp = nn.Sequential( | |
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth), | |
nn.GLU(dim=-1) | |
) | |
self.to_freqs.append(mlp) | |
def forward(self, x): | |
x = x.unbind(dim=-2) | |
outs = [] | |
for band_features, mlp in zip(x, self.to_freqs): | |
freq_out = mlp(band_features) | |
outs.append(freq_out) | |
return torch.cat(outs, dim=-1) | |
# main class | |
DEFAULT_FREQS_PER_BANDS = ( | |
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
2, 2, 2, 2, | |
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
12, 12, 12, 12, 12, 12, 12, 12, | |
24, 24, 24, 24, 24, 24, 24, 24, | |
48, 48, 48, 48, 48, 48, 48, 48, | |
128, 129, | |
) | |
class BSRoformer(Module): | |
# @beartype | |
def __init__( | |
self, | |
dim, | |
*, | |
depth, | |
stereo=False, | |
num_stems=1, | |
time_transformer_depth=2, | |
freq_transformer_depth=2, | |
linear_transformer_depth=0, | |
freqs_per_bands: Tuple[int, ...] = DEFAULT_FREQS_PER_BANDS, | |
# in the paper, they divide into ~60 bands, test with 1 for starters | |
dim_head=64, | |
heads=8, | |
attn_dropout=0., | |
ff_dropout=0., | |
flash_attn=True, | |
dim_freqs_in=1025, | |
stft_n_fft=2048, | |
stft_hop_length=512, | |
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction | |
stft_win_length=2048, | |
stft_normalized=False, | |
stft_window_fn: Optional[Callable] = None, | |
mask_estimator_depth=2, | |
multi_stft_resolution_loss_weight=1., | |
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256), | |
multi_stft_hop_size=147, | |
multi_stft_normalized=False, | |
multi_stft_window_fn: Callable = torch.hann_window | |
): | |
super().__init__() | |
self.stereo = stereo | |
self.audio_channels = 2 if stereo else 1 | |
self.num_stems = num_stems | |
self.layers = ModuleList([]) | |
transformer_kwargs = dict( | |
dim=dim, | |
heads=heads, | |
dim_head=dim_head, | |
attn_dropout=attn_dropout, | |
ff_dropout=ff_dropout, | |
flash_attn=flash_attn, | |
norm_output=False | |
) | |
time_rotary_embed = RotaryEmbedding(dim=dim_head) | |
freq_rotary_embed = RotaryEmbedding(dim=dim_head) | |
for _ in range(depth): | |
tran_modules = [] | |
if linear_transformer_depth > 0: | |
tran_modules.append(Transformer(depth=linear_transformer_depth, linear_attn=True, **transformer_kwargs)) | |
tran_modules.append( | |
Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs) | |
) | |
tran_modules.append( | |
Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs) | |
) | |
self.layers.append(nn.ModuleList(tran_modules)) | |
self.final_norm = RMSNorm(dim) | |
self.stft_kwargs = dict( | |
n_fft=stft_n_fft, | |
hop_length=stft_hop_length, | |
win_length=stft_win_length, | |
normalized=stft_normalized | |
) | |
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length) | |
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, return_complex=True).shape[1] | |
assert len(freqs_per_bands) > 1 | |
assert sum( | |
freqs_per_bands) == freqs, f'the number of freqs in the bands must equal {freqs} based on the STFT settings, but got {sum(freqs_per_bands)}' | |
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in freqs_per_bands) | |
self.band_split = BandSplit( | |
dim=dim, | |
dim_inputs=freqs_per_bands_with_complex | |
) | |
self.mask_estimators = nn.ModuleList([]) | |
for _ in range(num_stems): | |
mask_estimator = MaskEstimator( | |
dim=dim, | |
dim_inputs=freqs_per_bands_with_complex, | |
depth=mask_estimator_depth | |
) | |
self.mask_estimators.append(mask_estimator) | |
# for the multi-resolution stft loss | |
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight | |
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes | |
self.multi_stft_n_fft = stft_n_fft | |
self.multi_stft_window_fn = multi_stft_window_fn | |
self.multi_stft_kwargs = dict( | |
hop_length=multi_stft_hop_size, | |
normalized=multi_stft_normalized | |
) | |
def forward( | |
self, | |
raw_audio, | |
target=None, | |
return_loss_breakdown=False | |
): | |
""" | |
einops | |
b - batch | |
f - freq | |
t - time | |
s - audio channel (1 for mono, 2 for stereo) | |
n - number of 'stems' | |
c - complex (2) | |
d - feature dimension | |
""" | |
device = raw_audio.device | |
if raw_audio.ndim == 2: | |
raw_audio = rearrange(raw_audio, 'b t -> b 1 t') | |
channels = raw_audio.shape[1] | |
assert (not self.stereo and channels == 1) or ( | |
self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)' | |
# to stft | |
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t') | |
stft_window = self.stft_window_fn(device=device) | |
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True) | |
stft_repr = torch.view_as_real(stft_repr) | |
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c') | |
stft_repr = rearrange(stft_repr, | |
'b s f t c -> b (f s) t c') # merge stereo / mono into the frequency, with frequency leading dimension, for band splitting | |
x = rearrange(stft_repr, 'b f t c -> b t (f c)') | |
# print("460:", x.dtype)#fp32 | |
x = self.band_split(x) | |
# axial / hierarchical attention | |
# print("487:",x.dtype)#fp16 | |
for transformer_block in self.layers: | |
if len(transformer_block) == 3: | |
linear_transformer, time_transformer, freq_transformer = transformer_block | |
x, ft_ps = pack([x], 'b * d') | |
# print("494:", x.dtype)#fp16 | |
x = linear_transformer(x) | |
# print("496:", x.dtype)#fp16 | |
x, = unpack(x, ft_ps, 'b * d') | |
else: | |
time_transformer, freq_transformer = transformer_block | |
# print("501:", x.dtype)#fp16 | |
x = rearrange(x, 'b t f d -> b f t d') | |
x, ps = pack([x], '* t d') | |
x = time_transformer(x) | |
# print("505:", x.dtype)#fp16 | |
x, = unpack(x, ps, '* t d') | |
x = rearrange(x, 'b f t d -> b t f d') | |
x, ps = pack([x], '* f d') | |
x = freq_transformer(x) | |
x, = unpack(x, ps, '* f d') | |
# print("515:", x.dtype)######fp16 | |
x = self.final_norm(x) | |
num_stems = len(self.mask_estimators) | |
# print("519:", x.dtype)#fp32 | |
mask = torch.stack([fn(x) for fn in self.mask_estimators], dim=1) | |
mask = rearrange(mask, 'b n t (f c) -> b n f t c', c=2) | |
# modulate frequency representation | |
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c') | |
# complex number multiplication | |
stft_repr = torch.view_as_complex(stft_repr) | |
mask = torch.view_as_complex(mask) | |
stft_repr = stft_repr * mask | |
# istft | |
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels) | |
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False) | |
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', s=self.audio_channels, n=num_stems) | |
if num_stems == 1: | |
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t') | |
# if a target is passed in, calculate loss for learning | |
if not exists(target): | |
return recon_audio | |
if self.num_stems > 1: | |
assert target.ndim == 4 and target.shape[1] == self.num_stems | |
if target.ndim == 2: | |
target = rearrange(target, '... t -> ... 1 t') | |
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft | |
loss = F.l1_loss(recon_audio, target) | |
multi_stft_resolution_loss = 0. | |
for window_size in self.multi_stft_resolutions_window_sizes: | |
res_stft_kwargs = dict( | |
n_fft=max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft | |
win_length=window_size, | |
return_complex=True, | |
window=self.multi_stft_window_fn(window_size, device=device), | |
**self.multi_stft_kwargs, | |
) | |
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs) | |
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs) | |
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y) | |
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight | |
total_loss = loss + weighted_multi_resolution_loss | |
if not return_loss_breakdown: | |
return total_loss | |
return total_loss, (loss, multi_stft_resolution_loss) |