Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import logging | |
logger = logging.getLogger(__name__) | |
import librosa | |
import numpy as np | |
import soundfile as sf | |
import torch | |
from tqdm import tqdm | |
cpu = torch.device("cpu") | |
class ConvTDFNetTrim: | |
def __init__( | |
self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024 | |
): | |
super(ConvTDFNetTrim, self).__init__() | |
self.dim_f = dim_f | |
self.dim_t = 2**dim_t | |
self.n_fft = n_fft | |
self.hop = hop | |
self.n_bins = self.n_fft // 2 + 1 | |
self.chunk_size = hop * (self.dim_t - 1) | |
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to( | |
device | |
) | |
self.target_name = target_name | |
self.blender = "blender" in model_name | |
self.dim_c = 4 | |
out_c = self.dim_c * 4 if target_name == "*" else self.dim_c | |
self.freq_pad = torch.zeros( | |
[1, out_c, self.n_bins - self.dim_f, self.dim_t] | |
).to(device) | |
self.n = L // 2 | |
def stft(self, x): | |
x = x.reshape([-1, self.chunk_size]) | |
x = torch.stft( | |
x, | |
n_fft=self.n_fft, | |
hop_length=self.hop, | |
window=self.window, | |
center=True, | |
return_complex=True, | |
) | |
x = torch.view_as_real(x) | |
x = x.permute([0, 3, 1, 2]) | |
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape( | |
[-1, self.dim_c, self.n_bins, self.dim_t] | |
) | |
return x[:, :, : self.dim_f] | |
def istft(self, x, freq_pad=None): | |
freq_pad = ( | |
self.freq_pad.repeat([x.shape[0], 1, 1, 1]) | |
if freq_pad is None | |
else freq_pad | |
) | |
x = torch.cat([x, freq_pad], -2) | |
c = 4 * 2 if self.target_name == "*" else 2 | |
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape( | |
[-1, 2, self.n_bins, self.dim_t] | |
) | |
x = x.permute([0, 2, 3, 1]) | |
x = x.contiguous() | |
x = torch.view_as_complex(x) | |
x = torch.istft( | |
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True | |
) | |
return x.reshape([-1, c, self.chunk_size]) | |
def get_models(device, dim_f, dim_t, n_fft): | |
return ConvTDFNetTrim( | |
device=device, | |
model_name="Conv-TDF", | |
target_name="vocals", | |
L=11, | |
dim_f=dim_f, | |
dim_t=dim_t, | |
n_fft=n_fft, | |
) | |
class Predictor: | |
def __init__(self, args): | |
import onnxruntime as ort | |
logger.info(ort.get_available_providers()) | |
self.args = args | |
self.model_ = get_models( | |
device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft | |
) | |
self.model = ort.InferenceSession( | |
os.path.join(args.onnx, self.model_.target_name + ".onnx"), | |
providers=[ | |
"CUDAExecutionProvider", | |
"DmlExecutionProvider", | |
"CPUExecutionProvider", | |
], | |
) | |
logger.info("ONNX load done") | |
def demix(self, mix): | |
samples = mix.shape[-1] | |
margin = self.args.margin | |
chunk_size = self.args.chunks * 44100 | |
assert not margin == 0, "margin cannot be zero!" | |
if margin > chunk_size: | |
margin = chunk_size | |
segmented_mix = {} | |
if self.args.chunks == 0 or samples < chunk_size: | |
chunk_size = samples | |
counter = -1 | |
for skip in range(0, samples, chunk_size): | |
counter += 1 | |
s_margin = 0 if counter == 0 else margin | |
end = min(skip + chunk_size + margin, samples) | |
start = skip - s_margin | |
segmented_mix[skip] = mix[:, start:end].copy() | |
if end == samples: | |
break | |
sources = self.demix_base(segmented_mix, margin_size=margin) | |
""" | |
mix:(2,big_sample) | |
segmented_mix:offset->(2,small_sample) | |
sources:(1,2,big_sample) | |
""" | |
return sources | |
def demix_base(self, mixes, margin_size): | |
chunked_sources = [] | |
progress_bar = tqdm(total=len(mixes)) | |
progress_bar.set_description("Processing") | |
for mix in mixes: | |
cmix = mixes[mix] | |
sources = [] | |
n_sample = cmix.shape[1] | |
model = self.model_ | |
trim = model.n_fft // 2 | |
gen_size = model.chunk_size - 2 * trim | |
pad = gen_size - n_sample % gen_size | |
mix_p = np.concatenate( | |
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1 | |
) | |
mix_waves = [] | |
i = 0 | |
while i < n_sample + pad: | |
waves = np.array(mix_p[:, i : i + model.chunk_size]) | |
mix_waves.append(waves) | |
i += gen_size | |
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu) | |
with torch.no_grad(): | |
_ort = self.model | |
spek = model.stft(mix_waves) | |
if self.args.denoise: | |
spec_pred = ( | |
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5 | |
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5 | |
) | |
tar_waves = model.istft(torch.tensor(spec_pred)) | |
else: | |
tar_waves = model.istft( | |
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0]) | |
) | |
tar_signal = ( | |
tar_waves[:, :, trim:-trim] | |
.transpose(0, 1) | |
.reshape(2, -1) | |
.numpy()[:, :-pad] | |
) | |
start = 0 if mix == 0 else margin_size | |
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size | |
if margin_size == 0: | |
end = None | |
sources.append(tar_signal[:, start:end]) | |
progress_bar.update(1) | |
chunked_sources.append(sources) | |
_sources = np.concatenate(chunked_sources, axis=-1) | |
# del self.model | |
progress_bar.close() | |
return _sources | |
def prediction(self, m, vocal_root, others_root, format): | |
os.makedirs(vocal_root, exist_ok=True) | |
os.makedirs(others_root, exist_ok=True) | |
basename = os.path.basename(m) | |
mix, rate = librosa.load(m, mono=False, sr=44100) | |
if mix.ndim == 1: | |
mix = np.asfortranarray([mix, mix]) | |
mix = mix.T | |
sources = self.demix(mix.T) | |
opt = sources[0].T | |
if format in ["wav", "flac"]: | |
sf.write( | |
"%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate | |
) | |
sf.write("%s/%s_others.%s" % (others_root, basename, format), opt, rate) | |
else: | |
path_vocal = "%s/%s_main_vocal.wav" % (vocal_root, basename) | |
path_other = "%s/%s_others.wav" % (others_root, basename) | |
sf.write(path_vocal, mix - opt, rate) | |
sf.write(path_other, opt, rate) | |
opt_path_vocal = path_vocal[:-4] + ".%s" % format | |
opt_path_other = path_other[:-4] + ".%s" % format | |
if os.path.exists(path_vocal): | |
os.system( | |
"ffmpeg -i '%s' -vn '%s' -q:a 2 -y" % (path_vocal, opt_path_vocal) | |
) | |
if os.path.exists(opt_path_vocal): | |
try: | |
os.remove(path_vocal) | |
except: | |
pass | |
if os.path.exists(path_other): | |
os.system( | |
"ffmpeg -i '%s' -vn '%s' -q:a 2 -y" % (path_other, opt_path_other) | |
) | |
if os.path.exists(opt_path_other): | |
try: | |
os.remove(path_other) | |
except: | |
pass | |
class MDXNetDereverb: | |
def __init__(self, chunks): | |
self.onnx = "%s/uvr5_weights/onnx_dereverb_By_FoxJoy"%os.path.dirname(os.path.abspath(__file__)) | |
self.shifts = 10 # 'Predict with randomised equivariant stabilisation' | |
self.mixing = "min_mag" # ['default','min_mag','max_mag'] | |
self.chunks = chunks | |
self.margin = 44100 | |
self.dim_t = 9 | |
self.dim_f = 3072 | |
self.n_fft = 6144 | |
self.denoise = True | |
self.pred = Predictor(self) | |
self.device = cpu | |
def _path_audio_(self, input, others_root, vocal_root, format, is_hp3=False): | |
self.pred.prediction(input, vocal_root, others_root, format) | |