Spaces:
Running
on
Zero
Running
on
Zero
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py | |
# reference: https://github.com/lifeiteng/vall-e | |
import torch | |
from tqdm import tqdm | |
from AR.modules.embedding_onnx import SinePositionalEmbedding | |
from AR.modules.embedding_onnx import TokenEmbedding | |
from AR.modules.transformer_onnx import LayerNorm | |
from AR.modules.transformer_onnx import TransformerEncoder | |
from AR.modules.transformer_onnx import TransformerEncoderLayer | |
from torch import nn | |
from torch.nn import functional as F | |
from torchmetrics.classification import MulticlassAccuracy | |
default_config = { | |
"embedding_dim": 512, | |
"hidden_dim": 512, | |
"num_head": 8, | |
"num_layers": 12, | |
"num_codebook": 8, | |
"p_dropout": 0.0, | |
"vocab_size": 1024 + 1, | |
"phoneme_vocab_size": 512, | |
"EOS": 1024, | |
} | |
inf_tensor_value = torch.FloatTensor([-float("Inf")]).float() | |
def logits_to_probs( | |
logits, | |
previous_tokens = None, | |
temperature: float = 1.0, | |
top_k = None, | |
top_p = None, | |
repetition_penalty: float = 1.0, | |
): | |
previous_tokens = previous_tokens.squeeze() | |
if previous_tokens is not None and repetition_penalty != 1.0: | |
previous_tokens = previous_tokens.long() | |
score = torch.gather(logits, dim=0, index=previous_tokens) | |
score = torch.where( | |
score < 0, score * repetition_penalty, score / repetition_penalty | |
) | |
logits.scatter_(dim=0, index=previous_tokens, src=score) | |
if top_p is not None and top_p < 1.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cum_probs = torch.cumsum( | |
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1 | |
) | |
sorted_indices_to_remove = cum_probs > top_p | |
sorted_indices_to_remove[0] = False # keep at least one option | |
indices_to_remove = sorted_indices_to_remove.scatter( | |
dim=0, index=sorted_indices, src=sorted_indices_to_remove | |
) | |
logits = logits.masked_fill(indices_to_remove, -float("Inf")) | |
logits = logits / max(temperature, 1e-5) | |
if top_k is not None: | |
v, _ = torch.topk(logits, top_k) | |
pivot = v.select(-1, -1).unsqueeze(-1) | |
logits = torch.where(logits < pivot, inf_tensor_value, logits) | |
probs = torch.nn.functional.softmax(logits, dim=-1) | |
return probs | |
def multinomial_sample_one_no_sync( | |
probs_sort | |
): # Does multinomial sampling without a cuda synchronization | |
q = torch.randn_like(probs_sort) | |
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) | |
def sample( | |
logits, | |
previous_tokens, | |
**sampling_kwargs, | |
): | |
probs = logits_to_probs( | |
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs | |
) | |
idx_next = multinomial_sample_one_no_sync(probs) | |
return idx_next, probs | |
class OnnxEncoder(nn.Module): | |
def __init__(self, ar_text_embedding, bert_proj, ar_text_position): | |
super().__init__() | |
self.ar_text_embedding = ar_text_embedding | |
self.bert_proj = bert_proj | |
self.ar_text_position = ar_text_position | |
def forward(self, x, bert_feature): | |
x = self.ar_text_embedding(x) | |
x = x + self.bert_proj(bert_feature.transpose(1, 2)) | |
return self.ar_text_position(x) | |
class T2SFirstStageDecoder(nn.Module): | |
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric, | |
top_k, early_stop_num, num_layers): | |
super().__init__() | |
self.ar_audio_embedding = ar_audio_embedding | |
self.ar_audio_position = ar_audio_position | |
self.h = h | |
self.ar_predict_layer = ar_predict_layer | |
self.loss_fct = loss_fct | |
self.ar_accuracy_metric = ar_accuracy_metric | |
self.top_k = top_k | |
self.early_stop_num = early_stop_num | |
self.num_layers = num_layers | |
def forward(self, x, prompt): | |
y = prompt | |
x_example = x[:,:,0] * 0.0 | |
#N, 1, 512 | |
cache = { | |
"all_stage": self.num_layers, | |
"k": None, | |
"v": None, | |
"y_emb": None, | |
"first_infer": 1, | |
"stage": 0, | |
} | |
y_emb = self.ar_audio_embedding(y) | |
cache["y_emb"] = y_emb | |
y_pos = self.ar_audio_position(y_emb) | |
xy_pos = torch.concat([x, y_pos], dim=1) | |
y_example = y_pos[:,:,0] * 0.0 | |
x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool() | |
y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64) | |
y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum( | |
torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0 | |
) | |
y_attn_mask = y_attn_mask > 0 | |
x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool() | |
y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool() | |
x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1) | |
y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1) | |
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0) | |
cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\ | |
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1) | |
cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\ | |
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1) | |
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache) | |
logits = self.ar_predict_layer(xy_dec[:, -1]) | |
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0) | |
y = torch.concat([y, samples], dim=1) | |
return y, cache["k"], cache["v"], cache["y_emb"], x_example | |
class T2SStageDecoder(nn.Module): | |
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric, | |
top_k, early_stop_num, num_layers): | |
super().__init__() | |
self.ar_audio_embedding = ar_audio_embedding | |
self.ar_audio_position = ar_audio_position | |
self.h = h | |
self.ar_predict_layer = ar_predict_layer | |
self.loss_fct = loss_fct | |
self.ar_accuracy_metric = ar_accuracy_metric | |
self.top_k = top_k | |
self.early_stop_num = early_stop_num | |
self.num_layers = num_layers | |
def forward(self, y, k, v, y_emb, x_example): | |
cache = { | |
"all_stage": self.num_layers, | |
"k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)), | |
"v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)), | |
"y_emb": y_emb, | |
"first_infer": 0, | |
"stage": 0, | |
} | |
y_emb = torch.cat( | |
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1 | |
) | |
cache["y_emb"] = y_emb | |
y_pos = self.ar_audio_position(y_emb) | |
xy_pos = y_pos[:, -1:] | |
y_example = y_pos[:,:,0] * 0.0 | |
xy_attn_mask = torch.cat([x_example, y_example], dim=1) | |
xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool) | |
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache) | |
logits = self.ar_predict_layer(xy_dec[:, -1]) | |
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0) | |
y = torch.concat([y, samples], dim=1) | |
return y, cache["k"], cache["v"], cache["y_emb"], logits, samples | |
class Text2SemanticDecoder(nn.Module): | |
def __init__(self, config, norm_first=False, top_k=3): | |
super(Text2SemanticDecoder, self).__init__() | |
self.model_dim = config["model"]["hidden_dim"] | |
self.embedding_dim = config["model"]["embedding_dim"] | |
self.num_head = config["model"]["head"] | |
self.num_layers = config["model"]["n_layer"] | |
self.norm_first = norm_first | |
self.vocab_size = config["model"]["vocab_size"] | |
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"] | |
self.p_dropout = float(config["model"]["dropout"]) | |
self.EOS = config["model"]["EOS"] | |
self.norm_first = norm_first | |
assert self.EOS == self.vocab_size - 1 | |
self.bert_proj = nn.Linear(1024, self.embedding_dim) | |
self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout) | |
self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True) | |
self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout) | |
self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True) | |
self.h = TransformerEncoder( | |
TransformerEncoderLayer( | |
d_model=self.model_dim, | |
nhead=self.num_head, | |
dim_feedforward=self.model_dim * 4, | |
dropout=0.1, | |
batch_first=True, | |
norm_first=norm_first, | |
), | |
num_layers=self.num_layers, | |
norm=LayerNorm(self.model_dim) if norm_first else None, | |
) | |
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False) | |
self.loss_fct = nn.CrossEntropyLoss(reduction="sum") | |
self.ar_accuracy_metric = MulticlassAccuracy( | |
self.vocab_size, | |
top_k=top_k, | |
average="micro", | |
multidim_average="global", | |
ignore_index=self.EOS, | |
) | |
self.top_k = torch.LongTensor([1]) | |
self.early_stop_num = torch.LongTensor([-1]) | |
def init_onnx(self): | |
self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position) | |
self.first_stage_decoder = T2SFirstStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h, | |
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num, | |
self.num_layers) | |
self.stage_decoder = T2SStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h, | |
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num, | |
self.num_layers) | |
def forward(self, x, prompts, bert_feature): | |
early_stop_num = self.early_stop_num | |
prefix_len = prompts.shape[1] | |
x = self.onnx_encoder(x, bert_feature) | |
y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts) | |
stop = False | |
for idx in range(1, 1500): | |
enco = self.stage_decoder(y, k, v, y_emb, stage, x_example) | |
y, k, v, y_emb, stage, logits, samples = enco | |
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: | |
stop = True | |
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS: | |
stop = True | |
if stop: | |
break | |
y[0, -1] = 0 | |
return y, idx | |
def infer(self, x, prompts, bert_feature): | |
top_k = self.top_k | |
early_stop_num = self.early_stop_num | |
x = self.onnx_encoder(x, bert_feature) | |
y = prompts | |
prefix_len = y.shape[1] | |
x_len = x.shape[1] | |
x_example = x[:,:,0] * 0.0 | |
x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example) | |
x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool) | |
stop = False | |
cache = { | |
"all_stage": self.num_layers, | |
"k": [None] * self.num_layers, | |
"v": [None] * self.num_layers, | |
"y_emb": None, | |
"first_infer": 1, | |
"stage": 0, | |
} | |
for idx in range(1500): | |
if cache["first_infer"] == 1: | |
y_emb = self.ar_audio_embedding(y) | |
else: | |
y_emb = torch.cat( | |
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1 | |
) | |
cache["y_emb"] = y_emb | |
y_pos = self.ar_audio_position(y_emb) | |
if cache["first_infer"] == 1: | |
xy_pos = torch.concat([x, y_pos], dim=1) | |
else: | |
xy_pos = y_pos[:, -1:] | |
y_len = y_pos.shape[1] | |
if cache["first_infer"] == 1: | |
x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True) | |
y_attn_mask = F.pad( | |
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1), | |
(x_len, 0), value=False | |
) | |
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0) | |
else: | |
xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool) | |
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache) | |
logits = self.ar_predict_layer(xy_dec[:, -1]) | |
samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0) | |
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: | |
stop = True | |
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS: | |
stop = True | |
if stop: | |
if prompts.shape[1] == y.shape[1]: | |
y = torch.concat([y, torch.zeros_like(samples)], dim=1) | |
break | |
y = torch.concat([y, samples], dim=1) | |
cache["first_infer"] = 0 | |
return y, idx |