Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# | |
# This implementation is inspired from | |
# https://github.com/lucidrains/vector-quantize-pytorch | |
# which is released under MIT License. Hereafter, the original license: | |
# MIT License | |
# | |
# Copyright (c) 2020 Phil Wang | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
"""Core vector quantization implementation.""" | |
import typing as tp | |
from einops import rearrange, repeat | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from tqdm import tqdm | |
def default(val: tp.Any, d: tp.Any) -> tp.Any: | |
return val if val is not None else d | |
def ema_inplace(moving_avg, new, decay: float): | |
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) | |
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5): | |
return (x + epsilon) / (x.sum() + n_categories * epsilon) | |
def uniform_init(*shape: int): | |
t = torch.empty(shape) | |
nn.init.kaiming_uniform_(t) | |
return t | |
def sample_vectors(samples, num: int): | |
num_samples, device = samples.shape[0], samples.device | |
if num_samples >= num: | |
indices = torch.randperm(num_samples, device=device)[:num] | |
else: | |
indices = torch.randint(0, num_samples, (num,), device=device) | |
return samples[indices] | |
def kmeans(samples, num_clusters: int, num_iters: int = 10): | |
dim, dtype = samples.shape[-1], samples.dtype | |
max_kmeans_samples = 500 | |
samples = samples[:max_kmeans_samples, :] | |
means = sample_vectors(samples, num_clusters) | |
print("kmeans start ... ") | |
for _ in tqdm(range(num_iters)): | |
diffs = rearrange(samples, "n d -> n () d") - rearrange(means, "c d -> () c d") | |
dists = -(diffs**2).sum(dim=-1) | |
buckets = dists.max(dim=-1).indices | |
bins = torch.bincount(buckets, minlength=num_clusters) | |
zero_mask = bins == 0 | |
bins_min_clamped = bins.masked_fill(zero_mask, 1) | |
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) | |
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples) | |
new_means = new_means / bins_min_clamped[..., None] | |
means = torch.where(zero_mask[..., None], means, new_means) | |
return means, bins | |
class EuclideanCodebook(nn.Module): | |
"""Codebook with Euclidean distance. | |
Args: | |
dim (int): Dimension. | |
codebook_size (int): Codebook size. | |
kmeans_init (bool): Whether to use k-means to initialize the codebooks. | |
If set to true, run the k-means algorithm on the first training batch and use | |
the learned centroids as initialization. | |
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization. | |
decay (float): Decay for exponential moving average over the codebooks. | |
epsilon (float): Epsilon value for numerical stability. | |
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
that have an exponential moving average cluster size less than the specified threshold with | |
randomly selected vector from the current batch. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
codebook_size: int, | |
kmeans_init: int = False, | |
kmeans_iters: int = 10, | |
decay: float = 0.99, | |
epsilon: float = 1e-5, | |
threshold_ema_dead_code: int = 2, | |
): | |
super().__init__() | |
self.decay = decay | |
init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = ( | |
uniform_init if not kmeans_init else torch.zeros | |
) | |
embed = init_fn(codebook_size, dim) | |
self.codebook_size = codebook_size | |
self.kmeans_iters = kmeans_iters | |
self.epsilon = epsilon | |
self.threshold_ema_dead_code = threshold_ema_dead_code | |
self.register_buffer("inited", torch.Tensor([not kmeans_init])) | |
self.register_buffer("cluster_size", torch.zeros(codebook_size)) | |
self.register_buffer("embed", embed) | |
self.register_buffer("embed_avg", embed.clone()) | |
def init_embed_(self, data): | |
if self.inited: | |
return | |
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters) | |
self.embed.data.copy_(embed) | |
self.embed_avg.data.copy_(embed.clone()) | |
self.cluster_size.data.copy_(cluster_size) | |
self.inited.data.copy_(torch.Tensor([True])) | |
# Make sure all buffers across workers are in sync after initialization | |
# broadcast_tensors(self.buffers()) | |
def replace_(self, samples, mask): | |
modified_codebook = torch.where( | |
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed | |
) | |
self.embed.data.copy_(modified_codebook) | |
def expire_codes_(self, batch_samples): | |
if self.threshold_ema_dead_code == 0: | |
return | |
expired_codes = self.cluster_size < self.threshold_ema_dead_code | |
if not torch.any(expired_codes): | |
return | |
batch_samples = rearrange(batch_samples, "... d -> (...) d") | |
self.replace_(batch_samples, mask=expired_codes) | |
# broadcast_tensors(self.buffers()) | |
def preprocess(self, x): | |
x = rearrange(x, "... d -> (...) d") | |
return x | |
def quantize(self, x): | |
embed = self.embed.t() | |
dist = -( | |
x.pow(2).sum(1, keepdim=True) | |
- 2 * x @ embed | |
+ embed.pow(2).sum(0, keepdim=True) | |
) | |
embed_ind = dist.max(dim=-1).indices | |
return embed_ind | |
def postprocess_emb(self, embed_ind, shape): | |
return embed_ind.view(*shape[:-1]) | |
def dequantize(self, embed_ind): | |
quantize = F.embedding(embed_ind, self.embed) | |
return quantize | |
def encode(self, x): | |
shape = x.shape | |
# pre-process | |
x = self.preprocess(x) | |
# quantize | |
embed_ind = self.quantize(x) | |
# post-process | |
embed_ind = self.postprocess_emb(embed_ind, shape) | |
return embed_ind | |
def decode(self, embed_ind): | |
quantize = self.dequantize(embed_ind) | |
return quantize | |
def forward(self, x): | |
shape, dtype = x.shape, x.dtype | |
x = self.preprocess(x) | |
self.init_embed_(x) | |
embed_ind = self.quantize(x) | |
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) | |
embed_ind = self.postprocess_emb(embed_ind, shape) | |
quantize = self.dequantize(embed_ind) | |
if self.training: | |
# We do the expiry of code at that point as buffers are in sync | |
# and all the workers will take the same decision. | |
self.expire_codes_(x) | |
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay) | |
embed_sum = x.t() @ embed_onehot | |
ema_inplace(self.embed_avg, embed_sum.t(), self.decay) | |
cluster_size = ( | |
laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon) | |
* self.cluster_size.sum() | |
) | |
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) | |
self.embed.data.copy_(embed_normalized) | |
return quantize, embed_ind | |
class VectorQuantization(nn.Module): | |
"""Vector quantization implementation. | |
Currently supports only euclidean distance. | |
Args: | |
dim (int): Dimension | |
codebook_size (int): Codebook size | |
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim. | |
decay (float): Decay for exponential moving average over the codebooks. | |
epsilon (float): Epsilon value for numerical stability. | |
kmeans_init (bool): Whether to use kmeans to initialize the codebooks. | |
kmeans_iters (int): Number of iterations used for kmeans initialization. | |
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
that have an exponential moving average cluster size less than the specified threshold with | |
randomly selected vector from the current batch. | |
commitment_weight (float): Weight for commitment loss. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
codebook_size: int, | |
codebook_dim: tp.Optional[int] = None, | |
decay: float = 0.99, | |
epsilon: float = 1e-5, | |
kmeans_init: bool = True, | |
kmeans_iters: int = 50, | |
threshold_ema_dead_code: int = 2, | |
commitment_weight: float = 1.0, | |
): | |
super().__init__() | |
_codebook_dim: int = default(codebook_dim, dim) | |
requires_projection = _codebook_dim != dim | |
self.project_in = ( | |
nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity() | |
) | |
self.project_out = ( | |
nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity() | |
) | |
self.epsilon = epsilon | |
self.commitment_weight = commitment_weight | |
self._codebook = EuclideanCodebook( | |
dim=_codebook_dim, | |
codebook_size=codebook_size, | |
kmeans_init=kmeans_init, | |
kmeans_iters=kmeans_iters, | |
decay=decay, | |
epsilon=epsilon, | |
threshold_ema_dead_code=threshold_ema_dead_code, | |
) | |
self.codebook_size = codebook_size | |
def codebook(self): | |
return self._codebook.embed | |
def encode(self, x): | |
x = rearrange(x, "b d n -> b n d") | |
x = self.project_in(x) | |
embed_in = self._codebook.encode(x) | |
return embed_in | |
def decode(self, embed_ind): | |
quantize = self._codebook.decode(embed_ind) | |
quantize = self.project_out(quantize) | |
quantize = rearrange(quantize, "b n d -> b d n") | |
return quantize | |
def forward(self, x): | |
device = x.device | |
x = rearrange(x, "b d n -> b n d") | |
x = self.project_in(x) | |
quantize, embed_ind = self._codebook(x) | |
if self.training: | |
quantize = x + (quantize - x).detach() | |
loss = torch.tensor([0.0], device=device, requires_grad=self.training) | |
if self.training: | |
if self.commitment_weight > 0: | |
commit_loss = F.mse_loss(quantize.detach(), x) | |
loss = loss + commit_loss * self.commitment_weight | |
quantize = self.project_out(quantize) | |
quantize = rearrange(quantize, "b n d -> b d n") | |
return quantize, embed_ind, loss | |
class ResidualVectorQuantization(nn.Module): | |
"""Residual vector quantization implementation. | |
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf | |
""" | |
def __init__(self, *, num_quantizers, **kwargs): | |
super().__init__() | |
self.layers = nn.ModuleList( | |
[VectorQuantization(**kwargs) for _ in range(num_quantizers)] | |
) | |
def forward( | |
self, x, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None | |
): | |
quantized_out = 0.0 | |
residual = x | |
all_losses = [] | |
all_indices = [] | |
out_quantized = [] | |
n_q = n_q or len(self.layers) | |
for i, layer in enumerate(self.layers[:n_q]): | |
quantized, indices, loss = layer(residual) | |
residual = residual - quantized | |
quantized_out = quantized_out + quantized | |
all_indices.append(indices) | |
all_losses.append(loss) | |
if layers and i in layers: | |
out_quantized.append(quantized) | |
out_losses, out_indices = map(torch.stack, (all_losses, all_indices)) | |
return quantized_out, out_indices, out_losses, out_quantized | |
def encode( | |
self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None | |
) -> torch.Tensor: | |
residual = x | |
all_indices = [] | |
n_q = n_q or len(self.layers) | |
st = st or 0 | |
for layer in self.layers[st:n_q]: | |
indices = layer.encode(residual) | |
quantized = layer.decode(indices) | |
residual = residual - quantized | |
all_indices.append(indices) | |
out_indices = torch.stack(all_indices) | |
return out_indices | |
def decode(self, q_indices: torch.Tensor, st: int = 0) -> torch.Tensor: | |
quantized_out = torch.tensor(0.0, device=q_indices.device) | |
for i, indices in enumerate(q_indices): | |
layer = self.layers[st + i] | |
quantized = layer.decode(indices) | |
quantized_out = quantized_out + quantized | |
return quantized_out | |