Spaces:
Running
on
Zero
Running
on
Zero
# This is Multi-reference timbre encoder | |
import torch | |
from torch import nn | |
from torch.nn.utils import remove_weight_norm, weight_norm | |
from module.attentions import MultiHeadAttention | |
class MRTE(nn.Module): | |
def __init__( | |
self, | |
content_enc_channels=192, | |
hidden_size=512, | |
out_channels=192, | |
kernel_size=5, | |
n_heads=4, | |
ge_layer=2, | |
): | |
super(MRTE, self).__init__() | |
self.cross_attention = MultiHeadAttention(hidden_size, hidden_size, n_heads) | |
self.c_pre = nn.Conv1d(content_enc_channels, hidden_size, 1) | |
self.text_pre = nn.Conv1d(content_enc_channels, hidden_size, 1) | |
self.c_post = nn.Conv1d(hidden_size, out_channels, 1) | |
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None): | |
if ge == None: | |
ge = 0 | |
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1) | |
ssl_enc = self.c_pre(ssl_enc * ssl_mask) | |
text_enc = self.text_pre(text * text_mask) | |
if test != None: | |
if test == 0: | |
x = ( | |
self.cross_attention( | |
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask | |
) | |
+ ssl_enc | |
+ ge | |
) | |
elif test == 1: | |
x = ssl_enc + ge | |
elif test == 2: | |
x = ( | |
self.cross_attention( | |
ssl_enc * 0 * ssl_mask, text_enc * text_mask, attn_mask | |
) | |
+ ge | |
) | |
else: | |
raise ValueError("test should be 0,1,2") | |
else: | |
x = ( | |
self.cross_attention( | |
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask | |
) | |
+ ssl_enc | |
+ ge | |
) | |
x = self.c_post(x * ssl_mask) | |
return x | |
class SpeakerEncoder(torch.nn.Module): | |
def __init__( | |
self, | |
mel_n_channels=80, | |
model_num_layers=2, | |
model_hidden_size=256, | |
model_embedding_size=256, | |
): | |
super(SpeakerEncoder, self).__init__() | |
self.lstm = nn.LSTM( | |
mel_n_channels, model_hidden_size, model_num_layers, batch_first=True | |
) | |
self.linear = nn.Linear(model_hidden_size, model_embedding_size) | |
self.relu = nn.ReLU() | |
def forward(self, mels): | |
self.lstm.flatten_parameters() | |
_, (hidden, _) = self.lstm(mels.transpose(-1, -2)) | |
embeds_raw = self.relu(self.linear(hidden[-1])) | |
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) | |
class MELEncoder(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers) | |
self.proj = nn.Conv1d(hidden_channels, out_channels, 1) | |
def forward(self, x): | |
# print(x.shape,x_lengths.shape) | |
x = self.pre(x) | |
x = self.enc(x) | |
x = self.proj(x) | |
return x | |
class WN(torch.nn.Module): | |
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers): | |
super(WN, self).__init__() | |
assert kernel_size % 2 == 1 | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.in_layers = torch.nn.ModuleList() | |
self.res_skip_layers = torch.nn.ModuleList() | |
for i in range(n_layers): | |
dilation = dilation_rate**i | |
padding = int((kernel_size * dilation - dilation) / 2) | |
in_layer = nn.Conv1d( | |
hidden_channels, | |
2 * hidden_channels, | |
kernel_size, | |
dilation=dilation, | |
padding=padding, | |
) | |
in_layer = weight_norm(in_layer) | |
self.in_layers.append(in_layer) | |
# last one is not necessary | |
if i < n_layers - 1: | |
res_skip_channels = 2 * hidden_channels | |
else: | |
res_skip_channels = hidden_channels | |
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) | |
res_skip_layer = weight_norm(res_skip_layer, name="weight") | |
self.res_skip_layers.append(res_skip_layer) | |
def forward(self, x): | |
output = torch.zeros_like(x) | |
n_channels_tensor = torch.IntTensor([self.hidden_channels]) | |
for i in range(self.n_layers): | |
x_in = self.in_layers[i](x) | |
acts = fused_add_tanh_sigmoid_multiply(x_in, n_channels_tensor) | |
res_skip_acts = self.res_skip_layers[i](acts) | |
if i < self.n_layers - 1: | |
res_acts = res_skip_acts[:, : self.hidden_channels, :] | |
x = x + res_acts | |
output = output + res_skip_acts[:, self.hidden_channels :, :] | |
else: | |
output = output + res_skip_acts | |
return output | |
def remove_weight_norm(self): | |
for l in self.in_layers: | |
remove_weight_norm(l) | |
for l in self.res_skip_layers: | |
remove_weight_norm(l) | |
def fused_add_tanh_sigmoid_multiply(input, n_channels): | |
n_channels_int = n_channels[0] | |
t_act = torch.tanh(input[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(input[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
if __name__ == "__main__": | |
content_enc = torch.randn(3, 192, 100) | |
content_mask = torch.ones(3, 1, 100) | |
ref_mel = torch.randn(3, 128, 30) | |
ref_mask = torch.ones(3, 1, 30) | |
model = MRTE() | |
out = model(content_enc, content_mask, ref_mel, ref_mask) | |
print(out.shape) | |