Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import numpy as np | |
import torch | |
import torch.utils.data | |
from tqdm import tqdm | |
from . import spec_utils | |
class VocalRemoverValidationSet(torch.utils.data.Dataset): | |
def __init__(self, patch_list): | |
self.patch_list = patch_list | |
def __len__(self): | |
return len(self.patch_list) | |
def __getitem__(self, idx): | |
path = self.patch_list[idx] | |
data = np.load(path) | |
X, y = data["X"], data["y"] | |
X_mag = np.abs(X) | |
y_mag = np.abs(y) | |
return X_mag, y_mag | |
def make_pair(mix_dir, inst_dir): | |
input_exts = [".wav", ".m4a", ".mp3", ".mp4", ".flac"] | |
X_list = sorted( | |
[ | |
os.path.join(mix_dir, fname) | |
for fname in os.listdir(mix_dir) | |
if os.path.splitext(fname)[1] in input_exts | |
] | |
) | |
y_list = sorted( | |
[ | |
os.path.join(inst_dir, fname) | |
for fname in os.listdir(inst_dir) | |
if os.path.splitext(fname)[1] in input_exts | |
] | |
) | |
filelist = list(zip(X_list, y_list)) | |
return filelist | |
def train_val_split(dataset_dir, split_mode, val_rate, val_filelist): | |
if split_mode == "random": | |
filelist = make_pair( | |
os.path.join(dataset_dir, "mixtures"), | |
os.path.join(dataset_dir, "instruments"), | |
) | |
random.shuffle(filelist) | |
if len(val_filelist) == 0: | |
val_size = int(len(filelist) * val_rate) | |
train_filelist = filelist[:-val_size] | |
val_filelist = filelist[-val_size:] | |
else: | |
train_filelist = [ | |
pair for pair in filelist if list(pair) not in val_filelist | |
] | |
elif split_mode == "subdirs": | |
if len(val_filelist) != 0: | |
raise ValueError( | |
"The `val_filelist` option is not available in `subdirs` mode" | |
) | |
train_filelist = make_pair( | |
os.path.join(dataset_dir, "training/mixtures"), | |
os.path.join(dataset_dir, "training/instruments"), | |
) | |
val_filelist = make_pair( | |
os.path.join(dataset_dir, "validation/mixtures"), | |
os.path.join(dataset_dir, "validation/instruments"), | |
) | |
return train_filelist, val_filelist | |
def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha): | |
perm = np.random.permutation(len(X)) | |
for i, idx in enumerate(tqdm(perm)): | |
if np.random.uniform() < reduction_rate: | |
y[idx] = spec_utils.reduce_vocal_aggressively( | |
X[idx], y[idx], reduction_mask | |
) | |
if np.random.uniform() < 0.5: | |
# swap channel | |
X[idx] = X[idx, ::-1] | |
y[idx] = y[idx, ::-1] | |
if np.random.uniform() < 0.02: | |
# mono | |
X[idx] = X[idx].mean(axis=0, keepdims=True) | |
y[idx] = y[idx].mean(axis=0, keepdims=True) | |
if np.random.uniform() < 0.02: | |
# inst | |
X[idx] = y[idx] | |
if np.random.uniform() < mixup_rate and i < len(perm) - 1: | |
lam = np.random.beta(mixup_alpha, mixup_alpha) | |
X[idx] = lam * X[idx] + (1 - lam) * X[perm[i + 1]] | |
y[idx] = lam * y[idx] + (1 - lam) * y[perm[i + 1]] | |
return X, y | |
def make_padding(width, cropsize, offset): | |
left = offset | |
roi_size = cropsize - left * 2 | |
if roi_size == 0: | |
roi_size = cropsize | |
right = roi_size - (width % roi_size) + left | |
return left, right, roi_size | |
def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset): | |
len_dataset = patches * len(filelist) | |
X_dataset = np.zeros((len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64) | |
y_dataset = np.zeros((len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64) | |
for i, (X_path, y_path) in enumerate(tqdm(filelist)): | |
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft) | |
coef = np.max([np.abs(X).max(), np.abs(y).max()]) | |
X, y = X / coef, y / coef | |
l, r, roi_size = make_padding(X.shape[2], cropsize, offset) | |
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode="constant") | |
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode="constant") | |
starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches) | |
ends = starts + cropsize | |
for j in range(patches): | |
idx = i * patches + j | |
X_dataset[idx] = X_pad[:, :, starts[j] : ends[j]] | |
y_dataset[idx] = y_pad[:, :, starts[j] : ends[j]] | |
return X_dataset, y_dataset | |
def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset): | |
patch_list = [] | |
patch_dir = "cs{}_sr{}_hl{}_nf{}_of{}".format( | |
cropsize, sr, hop_length, n_fft, offset | |
) | |
os.makedirs(patch_dir, exist_ok=True) | |
for i, (X_path, y_path) in enumerate(tqdm(filelist)): | |
basename = os.path.splitext(os.path.basename(X_path))[0] | |
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft) | |
coef = np.max([np.abs(X).max(), np.abs(y).max()]) | |
X, y = X / coef, y / coef | |
l, r, roi_size = make_padding(X.shape[2], cropsize, offset) | |
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode="constant") | |
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode="constant") | |
len_dataset = int(np.ceil(X.shape[2] / roi_size)) | |
for j in range(len_dataset): | |
outpath = os.path.join(patch_dir, "{}_p{}.npz".format(basename, j)) | |
start = j * roi_size | |
if not os.path.exists(outpath): | |
np.savez( | |
outpath, | |
X=X_pad[:, :, start : start + cropsize], | |
y=y_pad[:, :, start : start + cropsize], | |
) | |
patch_list.append(outpath) | |
return VocalRemoverValidationSet(patch_list) | |