Spaces:
Build error
Build error
import os | |
import sys | |
# to avoid the modified user.pth file | |
cnhubert_base_path = "GPT_SoVITS\pretrained_models\chinese-hubert-base" | |
bert_path = "GPT_SoVITS\pretrained_models\chinese-roberta-wwm-ext-large" | |
os.environ["version"] = 'v2' | |
now_dir = os.getcwd() | |
sys.path.insert(0, now_dir) | |
import gradio as gr | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
import numpy as np | |
from pathlib import Path | |
import os,librosa,torch | |
from scipy.io.wavfile import write as wavwrite | |
from GPT_SoVITS.feature_extractor import cnhubert | |
cnhubert.cnhubert_base_path=cnhubert_base_path | |
from GPT_SoVITS.module.models import SynthesizerTrn | |
from GPT_SoVITS.AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from GPT_SoVITS.text import cleaned_text_to_sequence | |
from GPT_SoVITS.text.cleaner import clean_text | |
import GPT_SoVITS.utils | |
from time import time as ttime | |
from GPT_SoVITS.module.mel_processing import spectrogram_torch | |
import tempfile | |
from tools.my_utils import load_audio | |
import os | |
import json | |
################ End strange import and user.pth modification ################ | |
# import pyopenjtalk | |
# cwd = os.getcwd() | |
# if os.path.exists(os.path.join(cwd,'user.dic')): | |
# pyopenjtalk.update_global_jtalk_with_user_dict(os.path.join(cwd, 'user.dic')) | |
import logging | |
logging.getLogger('httpx').setLevel(logging.WARNING) | |
logging.getLogger('httpcore').setLevel(logging.WARNING) | |
logging.getLogger('multipart').setLevel(logging.WARNING) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
#device = "cpu" | |
is_half = False | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path) | |
if(is_half==True):bert_model=bert_model.half().to(device) | |
else:bert_model=bert_model.to(device) | |
# bert_model=bert_model.to(device) | |
def get_bert_feature(text, word2ph): # Bert(不是HuBERT的特征计算) | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device)#####输入是long不用管精度问题,精度随bert_model | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
# if(is_half==True):phone_level_feature=phone_level_feature.half() | |
return phone_level_feature.T | |
loaded_sovits_model = [] # [(path, dict, model)] | |
loaded_gpt_model = [] | |
ssl_model = cnhubert.get_model() | |
if (is_half == True): | |
ssl_model = ssl_model.half().to(device) | |
else: | |
ssl_model = ssl_model.to(device) | |
def load_model(sovits_path, gpt_path): | |
global ssl_model | |
global loaded_sovits_model | |
global loaded_gpt_model | |
vq_model = None | |
t2s_model = None | |
dict_s2 = None | |
dict_s1 = None | |
hps = None | |
for path, dict_s2_, model in loaded_sovits_model: | |
if path == sovits_path: | |
vq_model = model | |
dict_s2 = dict_s2_ | |
break | |
for path, dict_s1_, model in loaded_gpt_model: | |
if path == gpt_path: | |
t2s_model = model | |
dict_s1 = dict_s1_ | |
break | |
if dict_s2 is None: | |
dict_s2 = torch.load(sovits_path, map_location="cpu") | |
hps = dict_s2["config"] | |
if dict_s1 is None: | |
dict_s1 = torch.load(gpt_path, map_location="cpu") | |
config = dict_s1["config"] | |
class DictToAttrRecursive: | |
def __init__(self, input_dict): | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
# 如果值是字典,递归调用构造函数 | |
setattr(self, key, DictToAttrRecursive(value)) | |
else: | |
setattr(self, key, value) | |
hps = DictToAttrRecursive(hps) | |
hps.model.semantic_frame_rate = "25hz" | |
if not vq_model: | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model) | |
if (is_half == True): | |
vq_model = vq_model.half().to(device) | |
else: | |
vq_model = vq_model.to(device) | |
vq_model.eval() | |
vq_model.load_state_dict(dict_s2["weight"], strict=False) | |
loaded_sovits_model.append((sovits_path, dict_s2, vq_model)) | |
hz = 50 | |
max_sec = config['data']['max_sec'] | |
if not t2s_model: | |
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if (is_half == True): t2s_model = t2s_model.half() | |
t2s_model = t2s_model.to(device) | |
t2s_model.eval() | |
total = sum([param.nelement() for param in t2s_model.parameters()]) | |
loaded_gpt_model.append((gpt_path, dict_s1, t2s_model)) | |
return vq_model, ssl_model, t2s_model, hps, config, hz, max_sec | |
def get_spepc(hps, filename): | |
audio=load_audio(filename,int(hps.data.sampling_rate)) | |
audio = audio / np.max(np.abs(audio)) | |
audio=torch.FloatTensor(audio) | |
audio_norm = audio | |
# audio_norm = audio / torch.max(torch.abs(audio)) | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False) | |
return spec | |
def create_tts_fn(vq_model, ssl_model, t2s_model, hps, config, hz, max_sec): | |
def tts_fn(ref_wav_path, prompt_text, prompt_language, target_phone, text_language, target_text = None): | |
t0 = ttime() | |
prompt_text=prompt_text.strip() | |
prompt_language=prompt_language | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000, mono=False) | |
direction = np.array([1,1]) | |
if wav16k.ndim == 2: | |
power = np.sum(np.abs(wav16k) ** 2, axis=1) | |
direction = power / np.sum(power) | |
wav16k = (wav16k[0] + wav16k[1]) / 2 | |
# | |
# maxx=0.95 | |
# tmp_max = np.abs(wav16k).max() | |
# alpha=0.5 | |
# wav16k = (wav16k / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * wav16k | |
#在这里归一化 | |
#print(max(np.abs(wav16k))) | |
#wav16k = wav16k / np.max(np.abs(wav16k)) | |
#print(max(np.abs(wav16k))) | |
# 添加0.3s的静音 | |
wav16k = np.concatenate([wav16k, np.zeros(int(hps.data.sampling_rate * 0.3)),]) | |
wav16k = torch.from_numpy(wav16k) | |
wav16k = wav16k.float() | |
if(is_half==True):wav16k=wav16k.half().to(device) | |
else:wav16k=wav16k.to(device) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
t1 = ttime() | |
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) | |
phones1=cleaned_text_to_sequence(phones1) | |
#texts=text.split("\n") | |
audio_opt = [] | |
zero_wav=np.zeros((2, int(hps.data.sampling_rate*0.3)),dtype=np.float16 if is_half==True else np.float32) | |
phones = get_phone_from_str_list(target_phone, text_language) | |
for phones2 in phones: | |
if(len(phones2) == 0): | |
continue | |
if(len(phones2) == 1 and phones2[0] == ""): | |
continue | |
#phones2, word2ph2, norm_text2 = clean_text(text, text_language) | |
phones2 = cleaned_text_to_sequence(phones2) | |
#if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device) | |
bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device) | |
#if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device) | |
bert2 = torch.zeros((1024, len(phones2))).to(bert1) | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
t2 = ttime() | |
idx = 0 | |
cnt = 0 | |
while idx == 0 and cnt < 2: | |
with torch.no_grad(): | |
# pred_semantic = t2s_model.model.infer | |
pred_semantic,idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=config['inference']['top_k'], | |
early_stop_num=hz * max_sec) | |
t3 = ttime() | |
cnt+=1 | |
if idx == 0: | |
return "Error: Generation failure: bad zero prediction.", None | |
pred_semantic = pred_semantic[:,-idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次 | |
refer = get_spepc(hps, ref_wav_path)#.to(device) | |
if(is_half==True):refer=refer.half().to(device) | |
else:refer=refer.to(device) | |
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分 | |
# direction乘上,变双通道 | |
# 强制0.5 | |
direction = np.array([1, 1]) | |
audio = np.expand_dims(audio, 0) * direction[:, np.newaxis] | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
t4 = ttime() | |
audio = (hps.data.sampling_rate,(np.concatenate(audio_opt, axis=1)*32768).astype(np.int16).T) | |
prefix_1 = prompt_text[:8].replace(" ", "_").replace("\n", "_").replace("?","_").replace("!","_").replace(",","_") | |
prefix_2 = target_text[:8].replace(" ", "_").replace("\n", "_").replace("?","_").replace("!","_").replace(",","_") | |
filename = tempfile.mktemp(suffix=".wav",prefix=f"{prefix_1}_{prefix_2}_") | |
#audiosegment.from_numpy_array(audio[1].T, framerate=audio[0]).export(filename, format="WAV") | |
wavwrite(filename, audio[0], audio[1]) | |
return "Success", audio, filename | |
return tts_fn | |
def get_str_list_from_phone(text, text_language): | |
# raw文本过g2p得到音素列表,再转成字符串 | |
# 注意,这里的text是一个段落,可能包含多个句子 | |
# 段落间\n分割,音素间空格分割 | |
print(text) | |
texts=text.split("\n") | |
phone_list = [] | |
for text in texts: | |
phones2, word2ph2, norm_text2 = clean_text(text, text_language) | |
phone_list.append(" ".join(phones2)) | |
return "\n".join(phone_list) | |
def get_phone_from_str_list(str_list:str, language:str = 'ja'): | |
# 从音素字符串中得到音素列表 | |
# 注意,这里的text是一个段落,可能包含多个句子 | |
# 段落间\n分割,音素间空格分割 | |
sentences = str_list.split("\n") | |
phones = [] | |
for sentence in sentences: | |
phones.append(sentence.split(" ")) | |
return phones | |
splits={",","。","?","!",",",".","?","!","~",":",":","—","…",}#不考虑省略号 | |
def split(todo_text): | |
todo_text = todo_text.replace("……", "。").replace("——", ",") | |
if (todo_text[-1] not in splits): todo_text += "。" | |
i_split_head = i_split_tail = 0 | |
len_text = len(todo_text) | |
todo_texts = [] | |
while (1): | |
if (i_split_head >= len_text): break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 | |
if (todo_text[i_split_head] in splits): | |
i_split_head += 1 | |
todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
i_split_tail = i_split_head | |
else: | |
i_split_head += 1 | |
return todo_texts | |
def change_reference_audio(prompt_text, transcripts): | |
return transcripts[prompt_text] | |
models = [] | |
models_info = json.load(open("./models/models_info.json", "r", encoding="utf-8")) | |
for i, info in models_info.items(): | |
title = info['title'] | |
cover = info['cover'] | |
gpt_weight = info['gpt_weight'] | |
sovits_weight = info['sovits_weight'] | |
example_reference = info['example_reference'] | |
transcripts = {} | |
transcript_path = info["transcript_path"] | |
path = os.path.dirname(transcript_path) | |
with open(transcript_path, 'r', encoding='utf-8') as file: | |
for line in file: | |
line = line.strip().replace("\\", "/") | |
items = line.split("|") | |
wav,t = items[0], items[-1] | |
wav = os.path.basename(wav) | |
transcripts[t] = os.path.join(os.path.join(path,"reference_audio"), wav) | |
vq_model, ssl_model, t2s_model, hps, config, hz, max_sec = load_model(sovits_weight, gpt_weight) | |
models.append( | |
( | |
i, | |
title, | |
cover, | |
transcripts, | |
example_reference, | |
create_tts_fn( | |
vq_model, ssl_model, t2s_model, hps, config, hz, max_sec | |
) | |
) | |
) | |
with gr.Blocks() as app: | |
gr.Markdown( | |
"# <center> GPT-SoVITS Demo\n" | |
) | |
with gr.Tabs(): | |
for (name, title, cover, transcripts, example_reference, tts_fn) in models: | |
with gr.TabItem(name): | |
with gr.Row(): | |
gr.Markdown( | |
'<div align="center">' | |
f'<a><strong>{title}</strong></a>' | |
'</div>') | |
with gr.Row(): | |
with gr.Column(): | |
prompt_text = gr.Dropdown( | |
label="Transcript of the Reference Audio", | |
value=example_reference if example_reference in transcripts else list(transcripts.keys())[0], | |
choices=list(transcripts.keys()) | |
) | |
inp_ref_audio = gr.Audio( | |
label="Reference Audio", | |
type="filepath", | |
interactive=False, | |
value=transcripts[example_reference] if example_reference in transcripts else list(transcripts.values())[0] | |
) | |
transcripts_state = gr.State(value=transcripts) | |
prompt_text.change( | |
fn=change_reference_audio, | |
inputs=[prompt_text, transcripts_state], | |
outputs=[inp_ref_audio] | |
) | |
prompt_language = gr.State(value="ja") | |
with gr.Column(): | |
text = gr.Textbox(label="Input Text", value="私はお兄ちゃんのだいだいだーいすきな妹なんだから、言うことなんでも聞いてくれますよね!") | |
text_language = gr.Dropdown( | |
label="Language", | |
choices=["ja"], | |
value="ja" | |
) | |
clean_button = gr.Button("Clean Text", variant="primary") | |
inference_button = gr.Button("Generate", variant="primary") | |
cleaned_text = gr.Textbox(label="Cleaned Text") | |
output = gr.Audio(label="Output Audio") | |
output_file = gr.File(label="Output Audio File") | |
om = gr.Textbox(label="Output Message") | |
clean_button.click( | |
fn=get_str_list_from_phone, | |
inputs=[text, text_language], | |
outputs=[cleaned_text] | |
) | |
inference_button.click( | |
fn=tts_fn, | |
inputs=[inp_ref_audio, prompt_text, prompt_language, cleaned_text, text_language, text], | |
outputs=[om, output, output_file] | |
) | |
app.launch(share=True) |