Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from . import spec_utils | |
class Conv2DBNActiv(nn.Module): | |
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU): | |
super(Conv2DBNActiv, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d( | |
nin, | |
nout, | |
kernel_size=ksize, | |
stride=stride, | |
padding=pad, | |
dilation=dilation, | |
bias=False, | |
), | |
nn.BatchNorm2d(nout), | |
activ(), | |
) | |
def __call__(self, x): | |
return self.conv(x) | |
class SeperableConv2DBNActiv(nn.Module): | |
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU): | |
super(SeperableConv2DBNActiv, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d( | |
nin, | |
nin, | |
kernel_size=ksize, | |
stride=stride, | |
padding=pad, | |
dilation=dilation, | |
groups=nin, | |
bias=False, | |
), | |
nn.Conv2d(nin, nout, kernel_size=1, bias=False), | |
nn.BatchNorm2d(nout), | |
activ(), | |
) | |
def __call__(self, x): | |
return self.conv(x) | |
class Encoder(nn.Module): | |
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU): | |
super(Encoder, self).__init__() | |
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ) | |
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ) | |
def __call__(self, x): | |
skip = self.conv1(x) | |
h = self.conv2(skip) | |
return h, skip | |
class Decoder(nn.Module): | |
def __init__( | |
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False | |
): | |
super(Decoder, self).__init__() | |
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ) | |
self.dropout = nn.Dropout2d(0.1) if dropout else None | |
def __call__(self, x, skip=None): | |
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True) | |
if skip is not None: | |
skip = spec_utils.crop_center(skip, x) | |
x = torch.cat([x, skip], dim=1) | |
h = self.conv(x) | |
if self.dropout is not None: | |
h = self.dropout(h) | |
return h | |
class ASPPModule(nn.Module): | |
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU): | |
super(ASPPModule, self).__init__() | |
self.conv1 = nn.Sequential( | |
nn.AdaptiveAvgPool2d((1, None)), | |
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ), | |
) | |
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ) | |
self.conv3 = SeperableConv2DBNActiv( | |
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ | |
) | |
self.conv4 = SeperableConv2DBNActiv( | |
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ | |
) | |
self.conv5 = SeperableConv2DBNActiv( | |
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ | |
) | |
self.conv6 = SeperableConv2DBNActiv( | |
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ | |
) | |
self.conv7 = SeperableConv2DBNActiv( | |
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ | |
) | |
self.bottleneck = nn.Sequential( | |
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1) | |
) | |
def forward(self, x): | |
_, _, h, w = x.size() | |
feat1 = F.interpolate( | |
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True | |
) | |
feat2 = self.conv2(x) | |
feat3 = self.conv3(x) | |
feat4 = self.conv4(x) | |
feat5 = self.conv5(x) | |
feat6 = self.conv6(x) | |
feat7 = self.conv7(x) | |
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1) | |
bottle = self.bottleneck(out) | |
return bottle | |