import argparse import os import traceback os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" import torch from faster_whisper import WhisperModel from tqdm import tqdm from tools.asr.config import check_fw_local_models language_code_list = [ "af", "am", "ar", "as", "az", "ba", "be", "bg", "bn", "bo", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "es", "et", "eu", "fa", "fi", "fo", "fr", "gl", "gu", "ha", "haw", "he", "hi", "hr", "ht", "hu", "hy", "id", "is", "it", "ja", "jw", "ka", "kk", "km", "kn", "ko", "la", "lb", "ln", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "nn", "no", "oc", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "sn", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "tg", "th", "tk", "tl", "tr", "tt", "uk", "ur", "uz", "vi", "yi", "yo", "zh", "yue", "auto"] def execute_asr(input_folder, output_folder, model_size, language, precision): if '-local' in model_size: model_size = model_size[:-6] model_path = f'tools/asr/models/faster-whisper-{model_size}' else: model_path = model_size if language == 'auto': language = None #不设置语种由模型自动输出概率最高的语种 print("loading faster whisper model:",model_size,model_path) device = 'cuda' if torch.cuda.is_available() else 'cpu' try: model = WhisperModel(model_path, device=device, compute_type=precision) except: return print(traceback.format_exc()) input_file_names = os.listdir(input_folder) input_file_names.sort() output = [] output_file_name = os.path.basename(input_folder) for file_name in tqdm(input_file_names): try: file_path = os.path.join(input_folder, file_name) segments, info = model.transcribe( audio = file_path, beam_size = 5, vad_filter = True, vad_parameters = dict(min_silence_duration_ms=700), language = language) text = '' if info.language == "zh": print("检测为中文文本, 转 FunASR 处理") if("only_asr"not in globals()): from tools.asr.funasr_asr import \ only_asr # #如果用英文就不需要导入下载模型 text = only_asr(file_path) if text == '': for segment in segments: text += segment.text output.append(f"{file_path}|{output_file_name}|{info.language.upper()}|{text}") except: print(traceback.format_exc()) output_folder = output_folder or "output/asr_opt" os.makedirs(output_folder, exist_ok=True) output_file_path = os.path.abspath(f'{output_folder}/{output_file_name}.list') with open(output_file_path, "w", encoding="utf-8") as f: f.write("\n".join(output)) print(f"ASR 任务完成->标注文件路径: {output_file_path}\n") return output_file_path if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-i", "--input_folder", type=str, required=True, help="Path to the folder containing WAV files.") parser.add_argument("-o", "--output_folder", type=str, required=True, help="Output folder to store transcriptions.") parser.add_argument("-s", "--model_size", type=str, default='large-v3', choices=check_fw_local_models(), help="Model Size of Faster Whisper") parser.add_argument("-l", "--language", type=str, default='ja', choices=language_code_list, help="Language of the audio files.") parser.add_argument("-p", "--precision", type=str, default='float16', choices=['float16','float32','int8'], help="fp16, int8 or fp32") cmd = parser.parse_args() output_file_path = execute_asr( input_folder = cmd.input_folder, output_folder = cmd.output_folder, model_size = cmd.model_size, language = cmd.language, precision = cmd.precision, )