from functools import wraps from packaging import version from collections import namedtuple import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, reduce # constants FlashAttentionConfig = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def default(v, d): return v if exists(v) else d def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__( self, dropout = 0., flash = False, scale = None ): super().__init__() self.scale = scale self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = FlashAttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = FlashAttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = FlashAttentionConfig(False, True, True) def flash_attn(self, q, k, v): _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device if exists(self.scale): default_scale = q.shape[-1] ** -0.5 q = q * (self.scale / default_scale) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, dropout_p = self.dropout if self.training else 0. ) return out def forward(self, q, k, v): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ q_len, k_len, device = q.shape[-2], k.shape[-2], q.device scale = default(self.scale, q.shape[-1] ** -0.5) if self.flash: return self.flash_attn(q, k, v) # similarity sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum(f"b h i j, b h j d -> b h i d", attn, v) return out