# -*- coding: utf-8 -*- import sys,os inp_text= os.environ.get("inp_text") inp_wav_dir= os.environ.get("inp_wav_dir") exp_name= os.environ.get("exp_name") i_part= os.environ.get("i_part") all_parts= os.environ.get("all_parts") os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES") from feature_extractor import cnhubert opt_dir= os.environ.get("opt_dir") cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir") import torch is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() import pdb,traceback,numpy as np,logging from scipy.io import wavfile import librosa now_dir = os.getcwd() sys.path.append(now_dir) from tools.my_utils import load_audio # from config import cnhubert_base_path # cnhubert.cnhubert_base_path=cnhubert_base_path # inp_text=sys.argv[1] # inp_wav_dir=sys.argv[2] # exp_name=sys.argv[3] # i_part=sys.argv[4] # all_parts=sys.argv[5] # os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6] # cnhubert.cnhubert_base_path=sys.argv[7] # opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name from time import time as ttime import shutil def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path dir=os.path.dirname(path) name=os.path.basename(path) # tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part) tmp_path="%s%s.pth"%(ttime(),i_part) torch.save(fea,tmp_path) shutil.move(tmp_path,"%s/%s"%(dir,name)) hubert_dir="%s/4-cnhubert"%(opt_dir) wav32dir="%s/5-wav32k"%(opt_dir) os.makedirs(opt_dir,exist_ok=True) os.makedirs(hubert_dir,exist_ok=True) os.makedirs(wav32dir,exist_ok=True) maxx=0.95 alpha=0.5 if torch.cuda.is_available(): device = "cuda:0" # elif torch.backends.mps.is_available(): # device = "mps" else: device = "cpu" model=cnhubert.get_model() # is_half=False if(is_half==True): model=model.half().to(device) else: model = model.to(device) nan_fails=[] def name2go(wav_name,wav_path): hubert_path="%s/%s.pt"%(hubert_dir,wav_name) if(os.path.exists(hubert_path)):return tmp_audio = load_audio(wav_path, 32000) tmp_max = np.abs(tmp_audio).max() if tmp_max > 2.2: print("%s-filtered,%s" % (wav_name, tmp_max)) return tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio tmp_audio32b = (tmp_audio / tmp_max * (maxx * alpha*1145.14)) + ((1 - alpha)*1145.14) * tmp_audio tmp_audio = librosa.resample( tmp_audio32b, orig_sr=32000, target_sr=16000 )#不是重采样问题 tensor_wav16 = torch.from_numpy(tmp_audio) if (is_half == True): tensor_wav16=tensor_wav16.half().to(device) else: tensor_wav16 = tensor_wav16.to(device) ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215]) if np.isnan(ssl.detach().numpy()).sum()!= 0: nan_fails.append((wav_name,wav_path)) print("nan filtered:%s"%wav_name) return wavfile.write( "%s/%s"%(wav32dir,wav_name), 32000, tmp_audio32.astype("int16"), ) my_save(ssl,hubert_path) with open(inp_text,"r",encoding="utf8")as f: lines=f.read().strip("\n").split("\n") for line in lines[int(i_part)::int(all_parts)]: try: # wav_name,text=line.split("\t") wav_name, spk_name, language, text = line.split("|") if (inp_wav_dir != "" and inp_wav_dir != None): wav_name = os.path.basename(wav_name) wav_path = "%s/%s"%(inp_wav_dir, wav_name) else: wav_path=wav_name wav_name = os.path.basename(wav_name) name2go(wav_name,wav_path) except: print(line,traceback.format_exc()) if(len(nan_fails)>0 and is_half==True): is_half=False model=model.float() for wav in nan_fails: try: name2go(wav[0],wav[1]) except: print(wav_name,traceback.format_exc())