# -*- coding: utf-8 -*- import os inp_text = os.environ.get("inp_text") inp_wav_dir = os.environ.get("inp_wav_dir") exp_name = os.environ.get("exp_name") i_part = os.environ.get("i_part") all_parts = os.environ.get("all_parts") os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES") opt_dir = os.environ.get("opt_dir") bert_pretrained_dir = os.environ.get("bert_pretrained_dir") import torch is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() import sys, numpy as np, traceback, pdb import os.path from glob import glob from tqdm import tqdm from text.cleaner import clean_text from transformers import AutoModelForMaskedLM, AutoTokenizer import numpy as np # inp_text=sys.argv[1] # inp_wav_dir=sys.argv[2] # exp_name=sys.argv[3] # i_part=sys.argv[4] # all_parts=sys.argv[5] # os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6]#i_gpu # opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name # bert_pretrained_dir="/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large" from time import time as ttime import shutil def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path dir=os.path.dirname(path) name=os.path.basename(path) # tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part) tmp_path="%s%s.pth"%(ttime(),i_part) torch.save(fea,tmp_path) shutil.move(tmp_path,"%s/%s"%(dir,name)) txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part) if os.path.exists(txt_path) == False: bert_dir = "%s/3-bert" % (opt_dir) os.makedirs(opt_dir, exist_ok=True) os.makedirs(bert_dir, exist_ok=True) if torch.cuda.is_available(): device = "cuda:0" # elif torch.backends.mps.is_available(): # device = "mps" else: device = "cpu" tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir) bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir) if is_half == True: bert_model = bert_model.half().to(device) else: bert_model = bert_model.to(device) def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") for i in inputs: inputs[i] = inputs[i].to(device) res = bert_model(**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] assert len(word2ph) == len(text) phone_level_feature = [] for i in range(len(word2ph)): repeat_feature = res[i].repeat(word2ph[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature = torch.cat(phone_level_feature, dim=0) return phone_level_feature.T def process(data, res): for name, text, lan in data: try: name = os.path.basename(name) print(name) phones, word2ph, norm_text = clean_text( text.replace("%", "-").replace("¥", ","), lan ) path_bert = "%s/%s.pt" % (bert_dir, name) if os.path.exists(path_bert) == False and lan == "zh": bert_feature = get_bert_feature(norm_text, word2ph) assert bert_feature.shape[-1] == len(phones) # torch.save(bert_feature, path_bert) my_save(bert_feature, path_bert) phones = " ".join(phones) # res.append([name,phones]) res.append([name, phones, word2ph, norm_text]) except: print(name, text, traceback.format_exc()) todo = [] res = [] with open(inp_text, "r", encoding="utf8") as f: lines = f.read().strip("\n").split("\n") language_v1_to_language_v2 = { "ZH": "zh", "zh": "zh", "JP": "ja", "jp": "ja", "JA": "ja", "ja": "ja", "EN": "en", "en": "en", "En": "en", "KO": "ko", "Ko": "ko", "ko": "ko", "yue": "yue", "YUE": "yue", "Yue": "yue", } for line in lines[int(i_part) :: int(all_parts)]: try: wav_name, spk_name, language, text = line.split("|") # todo.append([name,text,"zh"]) if language in language_v1_to_language_v2.keys(): todo.append( [wav_name, text, language_v1_to_language_v2.get(language, language)] ) else: print(f"\033[33m[Waring] The {language = } of {wav_name} is not supported for training.\033[0m") except: print(line, traceback.format_exc()) process(todo, res) opt = [] for name, phones, word2ph, norm_text in res: opt.append("%s\t%s\t%s\t%s" % (name, phones, word2ph, norm_text)) with open(txt_path, "w", encoding="utf8") as f: f.write("\n".join(opt) + "\n")