import os import sys import cv2 import numpy as np from PIL import Image debug = False def gray3d_to_2d(grayscale: np.ndarray) -> np.ndarray: channel = grayscale.shape[2] if grayscale.ndim == 3 else 1 if channel!=1: text = f"grayscale shape = {grayscale.shape} channel = {channel} ndim = {grayscale.ndim} size = {grayscale.size}" raise ValueError(f"color maybe rgb or rgba {text}") if grayscale.ndim == 2: return grayscale return np.squeeze(grayscale) def pil_to_cv(image): cv_image = np.array(image, dtype=np.uint8) if cv_image.shape[2] == 3: # カラー cv_image = cv2.cvtColor(cv_image, cv2.COLOR_RGB2BGR) elif cv_image.shape[2] == 4: # cv_image = cv2.cvtColor(cv_image, cv2.COLOR_RGBA2BGR) return cv_image def blend_rgb_images(image1: np.ndarray, image2: np.ndarray, mask: np.ndarray) -> np.ndarray: if image1.shape != image2.shape or image1.shape[:2] != mask.shape: raise ValueError("not same shape") # 画像を float 型に変換 image1 = image1.astype(float) image2 = image2.astype(float) # mask to 3 chan 0 -1 value alpha = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR).astype(float) / 255.0 # calcurate blend blended = (1 - alpha) * image1 + alpha * image2 return blended.astype(np.uint8) def process_image(image,mask_image,inpaint_radius,blur_radius,edge_expand,inpaint_mode): #print(blur_radius,",",edge_expand) cv_image = pil_to_cv(image) cv_mask = pil_to_cv(mask_image) cv_gray = cv2.cvtColor(cv_mask,cv2.COLOR_BGR2GRAY) mask = gray3d_to_2d(cv_gray) cv2.imwrite("_mask.jpg",mask) cv2.imwrite("_image.jpg",cv_image) mode = cv2.INPAINT_TELEA if inpaint_mode == "Telea" else cv2.INPAINT_NS img_inpainted = cv2.inpaint(cv_image, mask,inpaint_radius, mode) if debug: cv2.imwrite("close_eye_inpaint.jpg",img_inpainted) ## blur if blur_radius > 0: if blur_radius%2==0: blur_radius += 1 #print(blur_radius) blurred_image = cv2.GaussianBlur(img_inpainted, (blur_radius, blur_radius), 0) #should be odd if debug: cv2.imwrite("close_eye_inpaint_burred.jpg",blurred_image) else: blurred_image = img_inpainted # expand edge and blur kernel = np.ones((edge_expand, edge_expand), np.uint8) extend_mask = cv2.dilate(mask, kernel, iterations=1) if edge_expand > 0 and blur_radius > 0: extend_burred_mask = cv2.GaussianBlur(extend_mask, (blur_radius, blur_radius), 0) else: extend_burred_mask = extend_mask img_inpainted = blend_rgb_images(img_inpainted,blurred_image,extend_burred_mask) output_image = img_inpainted.copy() if output_image.shape[2] == 3: # カラー output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB) return Image.fromarray(output_image) if __name__ == "__main__": image = Image.open(sys.argv[1]) mask = Image.open(sys.argv[2]) output = process_image(image,mask) output.save(sys.argv[3])