File size: 5,282 Bytes
7a3d678
5fad7da
 
c0f4ece
 
 
 
 
 
 
5fad7da
b6517cd
 
 
 
 
 
 
 
 
7a3d678
 
 
 
 
 
 
 
546800a
7a3d678
546800a
 
7a3d678
 
 
5fad7da
7a3d678
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f4ece
5fad7da
 
b6517cd
5fad7da
 
 
 
 
c0f4ece
 
5fad7da
 
 
 
c0f4ece
7a3d678
5fad7da
7a3d678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
397db89
7a3d678
 
c0f4ece
7a3d678
13500a1
7a3d678
 
 
 
397db89
 
 
 
c86e792
397db89
7a3d678
5fad7da
 
469d515
7a3d678
 
 
5fad7da
7a3d678
c86e792
379ca27
 
 
c86e792
7a3d678
379ca27
 
 
 
7a3d678
 
 
469d515
7a3d678
 
 
c0f4ece
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import spaces
import torch
from diffusers import FluxInpaintPipeline
import gradio as gr
import re
from PIL import Image

import os
import numpy as np


dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)






def sanitize_prompt(prompt):
  # Allow only alphanumeric characters, spaces, and basic punctuation
  allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
  sanitized_prompt = allowed_chars.sub("", prompt)
  return sanitized_prompt

@spaces.GPU(duration=180)
def process_images(image, image2=None,prompt="a girl",inpaint_model="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,progress=gr.Progress(track_tqdm=True)):
    # I'm not sure when this happen
    progress(0, desc="start-process-images")
    print("start-process-images")
    if not isinstance(image, dict):
        if image2 == None:
             print("empty mask")
             return image,None
        else:
            image = dict({'background': image, 'layers': [image2]})

    if image2!=None:
         #print("use image2")
         mask = image2
    else:
         if len(image['layers']) == 0:
              print("empty mask")
              return image
         print("use layer")
         mask = image['layers'][0]


    def process_inpaint(image,mask_image,prompt="a person",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4):
        if image == None:
            return None
   

        generators = []
        generator = torch.Generator("cuda").manual_seed(seed)
        generators.append(generator)
        # more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline
        output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator,strength=strength,
                      guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)

        return output.images[0]


    output = process_inpaint(image["background"],mask,prompt,inpaint_model,strength,seed)
        
    return output,mask
    

def read_file(path: str) -> str:
    with open(path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

css="""
#col-left {
    margin: 0 auto;
    max-width: 640px;
}
#col-right {
    margin: 0 auto;
    max-width: 640px;
}
"""
demo_blocks = gr.Blocks(css=css, elem_id="demo-container")
with demo_blocks as demo:
    with gr.Column():
        gr.HTML(read_file("demo_header.html"))
    with gr.Row():
                with gr.Column():
                    image = gr.ImageEditor(height=800,sources=['upload','clipboard'],transforms=[],image_mode='RGB', layers=False,  elem_id="image_upload", type="pil", label="Upload",brush=gr.Brush(colors=["#fff"], color_mode="fixed"))
                    with gr.Row(elem_id="prompt-container",  equal_height=False):
                        with gr.Row():
                            prompt = gr.Textbox(label="Prompt",value="a person",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
                            
                    btn = gr.Button("Inpaint", elem_id="run_button",variant="primary")
                    
                    image_mask = gr.Image(sources=['upload','clipboard'],  elem_id="mask_upload", type="pil", label="Mask_Upload",height=400, value=None)
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row( equal_height=True):
                            strength = gr.Number(value=0.75, minimum=0, maximum=1.0, step=0.01, label="Inpaint strength")
                            seed = gr.Number(value=0, minimum=0, step=1, label="Inpaint seed")
                        models = ["black-forest-labs/FLUX.1-schnell"]
                        inpaint_model = gr.Dropdown(label="modes", choices=models, value="black-forest-labs/FLUX.1-schnell") 
                        id_input=gr.Text(label="Name", visible=False)
                            
                with gr.Column():
                    image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="webp")
                    mask_out = gr.Image(height=800,sources=[],label="Mask", elem_id="mask-img",format="jpeg")

                    
            

    btn.click(fn=process_images, inputs=[image, image_mask,prompt,inpaint_model,strength,seed], outputs =[image_out,mask_out], api_name='infer')
    gr.Examples(
               examples=[
                    ["images/00547245_99.jpg", "images/00547245_99_mask.jpg","a beautiful girl,eyes closed",0.8,"images/00547245.jpg"],
                    ["images/00538245_paint.jpg", "images/00538245_mask.jpg","a beautiful girl,wearing t-shirt",0.7,"images/00538245.jpg"],
                    ["images/00207245_18.jpg", "images/00207245_18_mask.jpg","a beautiful girl,mouth opened",0.2,"images/00207245.jpg"]
                         ]
,
                #fn=example_out,
                inputs=[image,image_mask,prompt,strength,image_out],
                #outputs=[test_out],
                #cache_examples=False,
    )
    gr.HTML(
        """
            
        """
    )

demo_blocks.launch()