File size: 8,951 Bytes
58665c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import spaces
import gradio as gr
import subprocess
from PIL import Image
import json
import os
import time

import mp_box
import draw_landmarks68
import landmarks68_utils
import io
import numpy as np
'''
Face landmark detection based Face Detection.
https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker
from model card
https://storage.googleapis.com/mediapipe-assets/MediaPipe%20BlazeFace%20Model%20Card%20(Short%20Range).pdf
Licensed Apache License, Version 2.0
Train with google's dataset(more detail see model card)

'''

dir_name ="files"
passed_time = 60*60 
def clear_old_files(dir,passed_time):
    try:
        files = os.listdir(dir)
        current_time = time.time()
        for file in files:
            file_path = os.path.join(dir,file)
            
            ctime = os.stat(file_path).st_ctime
            diff = current_time - ctime
            #print(f"ctime={ctime},current_time={current_time},passed_time={passed_time},diff={diff}")
            if diff > passed_time:
                os.remove(file_path)
    except:
            print("maybe still gallery using error")

def get_image_id(image,length=32):
    buffer = io.BytesIO()
    image.save(buffer, format='PNG')
    hash_object = hashlib.sha256(buffer.getvalue())
    hex_dig = hash_object.hexdigest()
    unique_id = hex_dig[:length]
    return unique_id

def save_image(image,extension="jpg"):
    id = get_image_id(image)
    os.makedirs(dir_name,exist_ok=True)
    file_path = f"{dir_name}/{id}.{extension}"
    
    image.save(file_path)
    return file_path

def picker_color_to_rgba(picker_color):
    color_value = picker_color.strip("rgba()").split(",")
    color_value[0] = int(float(color_value[0]))
    color_value[1] = int(float(color_value[1]))
    color_value[2] = int(float(color_value[2]))
    color_value[3] = int(float(color_value[3]))
    return color_value

#@spaces.GPU(duration=120)
def process_images(image,progress=gr.Progress(track_tqdm=True)):
    if image == None:
        raise gr.Error("Need Image")

    progress(0, desc="Start Mediapipe")
    
    boxes,mp_image,face_landmarker_result = mp_box.mediapipe_to_box(image)
    annotated_image,bbox,landmark_points = draw_landmarks68.draw_landmarks_on_image(image,face_landmarker_result)
    landmark_list = draw_landmarks68.convert_to_landmark_group_json(landmark_points)

    annotations = []
    galleries = []

    def append(mask,label):
        file_path = save_image(mask)
        galleries.append((file_path,label))
        annotations.append((np.array(mask.convert("1")),label))

    def fill_points(points,base_image=None):
        if base_image == None:
            base_image = landmarks68_utils.create_color_image(image.width,image.height,(0,0,0))
        landmarks68_utils.fill_points(base_image,points)
        return base_image

    # TODO support type
    left_eye_points = landmarks68_utils.get_landmark_points(landmark_list,landmarks68_utils.PARTS_LEFT_EYE)
    right_eye_points = landmarks68_utils.get_landmark_points(landmark_list,landmarks68_utils.PARTS_RIGHT_EYE)
    eyes_mask = fill_points(left_eye_points)
    eyes_mask = fill_points(right_eye_points,eyes_mask)
    append(eyes_mask,"eyes")

    
    upper_lip_points = landmarks68_utils.get_landmark_points(landmark_list,landmarks68_utils.PARTS_UPPER_LIP)
    upper_lip_mask = fill_points(upper_lip_points)
    append(upper_lip_mask,"upper-lip")

    lower_lip_points = landmarks68_utils.get_landmark_points(landmark_list,landmarks68_utils.PARTS_LOWER_LIP)
    lower_lip_mask = fill_points(lower_lip_points)
    append(lower_lip_mask,"lower-lip")

    inner_mouth_points = landmarks68_utils.get_innner_mouth_points(landmark_list)
    inner_mouth_mask = fill_points(inner_mouth_points)
    append(inner_mouth_mask,"inner-mouth")
    
    
    # TODO support type
    contour_points = landmarks68_utils.get_landmark_points(landmark_list,landmarks68_utils.PARTS_CONTOUR)
    
    contour_points=landmarks68_utils.get_face_points(landmark_list)

    contour_mask = fill_points(contour_points)
    append(contour_mask,"contour")

    mixed = Image.composite(eyes_mask,upper_lip_mask,eyes_mask.convert("L"))
    mixed = Image.composite(mixed,lower_lip_mask,mixed.convert("L"))
    mixed = Image.composite(mixed,inner_mouth_mask,mixed.convert("L"))
    append(mixed,"mixed")

    return [image,annotations],galleries
    

def write_file(file_path,text):
    with open(file_path, 'w', encoding='utf-8') as f:
        f.write(text)

def read_file(file_path):
    """read the text of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

css="""
#col-left {
    margin: 0 auto;
    max-width: 640px;
}
#col-right {
    margin: 0 auto;
    max-width: 640px;
}
.grid-container {
  display: flex;
  align-items: center;
  justify-content: center;
  gap:10px
}

.image {
  width: 128px; 
  height: 128px; 
  object-fit: cover; 
}

.text {
  font-size: 16px;
}
"""

#css=css,

import hashlib

def text_to_sha256(text):
    text_bytes = text.encode('utf-8')
    hash_object = hashlib.sha256()
    hash_object.update(text_bytes)
    sha256_hex = hash_object.hexdigest()
    return sha256_hex


def create_json_download(text):
    file_id = f"{dir_name}/landmark_{text_to_sha256(text)[:32]}.json"
    write_file(file_id,text)
    # try to save
    return file_id

with gr.Blocks(css=css, elem_id="demo-container") as demo:
    with gr.Column():
        gr.HTML(read_file("demo_header.html"))
        gr.HTML(read_file("demo_tools.html"))
    with gr.Row():
                with gr.Column():
                    image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Upload")
                    with gr.Row(elem_id="prompt-container",  equal_height=False):
                        with gr.Row():
                            btn = gr.Button("Create Landmark 68 Mask", elem_id="run_button",variant="primary")
                    
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row( equal_height=True):
                            draw_number = gr.Checkbox(label="draw Number")

                            font_scale = gr.Slider(
                            label="Font Scale",
                            minimum=0.1,
                            maximum=2,
                            step=0.1,
                            value=0.5)

                            text_color = gr.ColorPicker(value="rgba(200,200,200,1)",label="text color")
                            #square_shape = gr.Checkbox(label="Square shape")
                        with gr.Row( equal_height=True):
                        
                            line_color = gr.ColorPicker(value="rgba(0,0,255,1)",label="line color")
                            line_size = gr.Slider(
                                label="Line Size",
                                minimum=0,
                                maximum=20,
                                step=1,
                                value=1)
                        with gr.Row( equal_height=True):
                            dot_color = gr.ColorPicker(value="rgba(255,0,0,1)",label="dot color")
                            dot_size = gr.Slider(
                                label="Dot Size",
                                minimum=0,
                                maximum=40,
                                step=1,
                                value=3)
                        with gr.Row( equal_height=True):
                            box_color = gr.ColorPicker(value="rgba(200,200,200,1)",label="box color")
                            box_size = gr.Slider(
                                label="Box Size",
                                minimum=0,
                                maximum=20,
                                step=1,
                                value=1)
                        with gr.Row( equal_height=True):
                            json_format = gr.Radio(choices=["raw","face-detection"],value="face-detection",label="json-output format")
                    
                with gr.Column():
                    image_out = gr.AnnotatedImage(label="Output", elem_id="output-img")
                    image_gallery = gr.Gallery(label="masks",preview=True)
                    #download_button.click(fn=json_download,inputs=text_out,outputs=download_button)
            

    btn.click(fn=process_images, inputs=[image],outputs=[image_out,image_gallery] ,api_name='infer')
    gr.Examples(
                examples =["examples/00003245_00.jpg","examples/00004200.jpg","examples/00002200.jpg","examples/00005259.jpg","examples/00018022.jpg","examples/img-above.jpg","examples/img-below.jpg","examples/img-side.jpg"],
                inputs=[image]
    )
    gr.HTML(read_file("demo_footer.html"))

    if __name__ == "__main__":
        demo.launch()